
Introduction
This paper outlines a solution for monitoring SAP R/3
performance using Perl and Perl/Tk. This solution
provides a primitive monitoring application which
demonstrates how performance data extracted from
SAP R/3 can be graphically displayed. In addition, the
monitoring ABAP function within SAP R/3 can be
invoked from within a Perl script and the data can
subsequently be analyzed using Perl.

The Problem
As an enterprise system, SAP R/3 provides several
different ways to tune the system, the principal means
is the internal tool, known as the Computing Center
Management System (or CCMS for short). While
CCMS provides a rich set of performance information
for the SAP R/3 system itself, the information is
limited to the SAP R/3 view of the world. For example,
the information is collected by a internal program
(known as the COLLECTOR_FOR_PERFORMANCE-
MONITOR) that gathers metrics of the system and
stores it in a database table (principally the table
MONI). This information is from the SAP R/3 system
itself. Since the SAP R/3 system itself is just one
component of an enterprise business process, other
useful information, regarding other systems, is not
available.

Since the SAP R/3 perspective of performance
management is introverted, there is often the need to
understand how SAP R/3 is performing in relation to
other systems. This can be viewed as managing SAP
R/3 from the business process perspective, in which
SAP R/3 participates, but is not the only business

system. Consider a petroleum solution that is in use
today as an example. Petroleum is pumped out of the
ground, the ground above (including the mineral
rights) is owned by several different people. The
amount of the oil that lies under the ground is appor-
tioned out percentage wise using formulas. The result
is that a single well can owe royalties to hundreds of
interests at a different percentage for each. SAP R/3
could possibly solve this problem, with lots of custom
coding and the like, or external systems, which do this
well, can be leveraged.

To manage this type of business process, metrics from
each of the systems must be collected. This requires
that the performance information within SAP R/3 must
be externalized in an easy to use manner. That is the
focus of the rest of this paper.

The Solution
The solution is to run an internal SAP R/3 perform-
ance report, and then to export that report as a flat file.
The flat file is then parsed via Perl to extract the
needed information. The information is then analyzed
and displayed in a Tk application. Graphically, the
process can be modeled as Figure 1: Program Flow.

Invoking the Performance Report

The first step in the process is to invoke an internal
SAP R/3 report to export performance data. To do
this, the report RSSTAT10 was selected. This report,
given the proper variants, will produce a highly
detailed report for each of the system task types. For
this paper the TOTAL task type was used, as it is the
aggregate of the SAP R/3 system.

Perl, the Enterprise Panacea? David Moring , August 1999
Monitoring SAP R/3 with Perl The Perl Conference 3.0

1

SAP R/3 System
Performance

Report Flat File
Perl Script

1. Invoke Performance Report

2. SAP R/3 Exports
Report

3. Script Extracts
Needed Data

TK Visual Display4. Update Visual
Display

Figure 1: Program Flow

To invoke this report a brief SAP R/3 ABAP was
written.1 This report was then designated within SAP
R/3 as externally callable via the external SAP R/3
RFC interface. The report can then be triggered from
an external call. This report could also be scheduled
using the internal SAP R/3 scheduling system to
execute at given intervals.

The SAP R/3 ABAP

Here is the ABAP report in its entirety:

FUNCTION Z_DGMTP3_EXPORT.
*"--------------------------------------

""Local interface:
*" EXPORTING
*"--------------------------------------

 TABLES: RFCRECORD.
 DATA: BEGIN OF MITAB OCCURS 0,
 MYRFCSIZE LIKE RFCRECORD-RFCSIZE,
 MYRFCRECORD LIKE
RFCRECORD-RFCRECORD,
 END OF MITAB.

 DATA FNAME(60) VALUE 'dgm_perf_data'.

 DATA OUTTAB(150) OCCURS 0 WITH HEADER
LINE.

* Begin by running the systems manage-
ment report RSSTAT10 and capture
* results to memory, here we have hard
coded the system information
* TODO: change each of these required
data to importing

 SUBMIT RSSTAT10
 WITH SSYSTEM = 'asystem'
 WITH SPERIOD = 'D'
 WITH SDATE = SY-DATUM
 WITH TASKTYPE = '*'
 WITH REPOFLAG = 'X'
 EXPORTING LIST TO MEMORY
 AND RETURN.

* TODO: Catch any exceptions here

* Get the results from memory, for
later processing
* use the MITAB internal table to hold
them

 CALL FUNCTION 'LIST_FROM_MEMORY'
 TABLES
 LISTOBJECT = MITAB
 EXCEPTIONS

 NOT_FOUND = 1.

* TODO: Catch exceptions

* Now change the gibberish ABAP report
native to something useful (ASCII)
* Put the results into the OUTTAB --
Just in case we want to do something
* later with them

 CALL FUNCTION 'LIST_TO_ASCI'
* EXPORTING
* LIST_INDEX = -1
 TABLES
 LISTASCI = OUTTAB
 LISTOBJECT= MITAB
 EXCEPTIONS
 EMPTY_LIST = 1
 LIST_INDEX_INVALID = 2
 OTHERS = 3.

* TODO: Catch exceptions
 OPEN DATASET FNAME FOR OUTPUT IN TEXT
MODE.
 LOOP AT OUTTAB.
 TRANSFER OUTTAB TO FNAME.
 ENDLOOP.
ENDFUNCTION.

Use Perl to Fire the Report

Now that the ABAP function is written, and has been
designated as externally RFC callable, it can be
applied.

A stub function is required to call the SAP R/3 RFC,
this can be generated using internal SAP R/3 tools to
create the C source code. The resulting executable
allows the function to be called from the command line
or via Perl.2

 This allows the report to be called through the SAP
R/3 RFC interface. Again, this is not rocket science
and the best way to do this (lo and behold) is to use a
line of Perl script (very short), such as follows:
system "./wr3rfc -d DEM -c 000 -u
sapuser -p password -h asystem -s 00
ConfigFile";

The wr3rfc program requires a “side info file” that
follows (for completeness):

COMMAND OPTIONS:
MODULE = Z_DGMTP3_EXPORT

Perl, the Enterprise Panacea? David Moring , August 1999
Monitoring SAP R/3 with Perl The Perl Conference 3.0

2

2 To save some time, I used a SAP R/3 RFC wrapper program “wr3rfc.exe” that is shipped with the Tivoli Module for SAP R/3
(Tivoli and IBM are trademarks of IBM). Consult the SAP R/3 documentation on creating your own, there is an open source
way.

1 If this were a production ABAP program, there would be a great deal more commenting and complete exception processing
routines would be included.

Use Perl to Parse and Analyze Flat File

Now that the data is in a text file, the power of Perl's
regex can be brought to bear. In this case, the response
time of the SAP R/3 system will be extracted. The Perl
program will parse through the program and pull the
response time and assign it to a variable. The same will
be done with the average database request time, the
average CPU time, and the wait time. These metrics
have a relationship. The response time is the sum of
the wait, CPU, and database time (see Figure 2: SAP
R/3 Performance Metrics).

The average response time should be about one second
in a well-sized, tuned SAP R/3 system. The CPU time
and database time should not make up more than 40%
of the average response time. Given these metrics, and
the performance guidelines, now a basic SAP R/3
performance monitor can be built.

Use Perl to Analyze the Data

The average database request time can now the corre-
lated with the response time to provide a percentage.
This can show how close the database request time is
exceeding the limit. Likewise, the CPU time can be
correlated with the response time to determine how
close the CPU time is to exceeding the limit. The
overall response time can also be compared to 1 second
to gage performance. This can also be done by subrou-
tines within the script, as is demonstrated in the next
section.

The Perl/Tk Applet
To make this interface even more interesting a quick
Tk program was pulled together to provide information
in one glance.

Program Description

The Perl program used in this project performs the
following functions using a graphical interface:

1. Calls the ABAP Performance function via the
SAP R/3 RFC interface.

2. Parses the resulting flat file for needed data.

3. Displays/Updates data in a graphical interface.

4. Allows a refresh interval to be set.

5. Help is included.

6. Open design for easy customization and
extensibility.

Program Features

This program was written to be quickly expandable
and adaptable, this was done using the following:

1. The data is stored in a anonymous array of
hashes. The entire array is parsed by the
display and update routines, so additional data
types can be added by just adding another hash.

2. The hash array for each data type that is
extracted contains the regex allowing quick
customization to extract other data.

3. The hash array for each data type contains the
file name, allowing the data to be pulled from
several different flat files, allows monitoring of
other SAP R/3 reports or other systems’ flat
files.

The program is broken into subroutines to allow
portability and reuse.3

A Walk Through the Program

The program begins with the creating of the anony-
mous list of hashes. The main window is then created,
and the initial title is assigned. A status frame is
created and the balloon help is initiated. The file menu
is then created. A main frame is created.

This completes the initial setup. The hash list is
parsed and the preliminary data is entered. The
control is then passed off to the routine that updates,
processes and fills the data. The main program ends in
the MainLoop call, as all Tk apps are prone to do.

This fill frame routine calls the routine that retrieves
the data. The routine that processes data is then called.
This data is then used to update the Tk display.

The routine that retrieves data parses the data hash
array. For each hash, the file is opened in slurp mode,
the regex is executed, and the retrieved data is stored.

Perl, the Enterprise Panacea? David Moring , August 1999
Monitoring SAP R/3 with Perl The Perl Conference 3.0

3

3 This program stole great amounts of code from an Internet stock tracking program that I wrote, as such, the use and structure
of the previous program allowed this program to be built in about 10 hours of time. Fast for coding.

Figure 2: SAP R/3 Performance Metrics

Average Response Time

Average
Wait
Time

Average
CPU Time

Average
Database
Request

Time

The routine that processes the data is bit more messy.
It is not likely to be as exportable as other parts, hence
its encapsulation (well almost, the hash array is
program wide scope, as does some other chunks of
data) of the processing logic. This routine compares
the data and assigns the appropriate alert level and
balloon message.

Usage

This program was written to be easy to use (did not
have time to write a help file). The menu allows the
information to be retrieved once, or at regular intervals
selected. The display contains pop-ups that provide
extra information and a status bar that displays hints.
The time of the last run is also displayed on the status
bar.

The Conclusion and The Irony
This paper has demonstrated how to extract perform-
ance data out of SAP R/3 and to convert data to
meaningful knowledge regarding SAP R/3 perform-
ance. It is admitted that this solution does not provide
any real enhanced information that cannot be obtained

internally using the SAP R/3 tool CCMS. That was not
the intention.

Instead, it has been demonstrated how to externalize
SAP R/3 operational information to the rest of the
world using Perl. This now allows the SAP R/3
system's performance information to be leverage in
enterprise business process instrumentation. Which, in
turn, allows the business process owner to focus on the
entire business process and not just the internal SAP
R/3 workings.

Perhaps it is ironic that a multi-million dollar, business
critical system can be monitored by a "free" open
source solution. Contra-wise, maybe it is a statement of
perl's elegance and power, the brilliance of the vision
and the sweat equity of those that have contributed
their time and effort. Either way, it works.

Comments and questions are welcome, please address,
via the e-mail, to david@tivoli.com.
All trademarks and/or trade names listed are owned by
the respective companies. This paper is an independ-
ent work, and is presented as such.

Perl, the Enterprise Panacea? David Moring , August 1999
Monitoring SAP R/3 with Perl The Perl Conference 3.0

4

