Objective:

° Batch Data Communication
° Types of BDC and differences between them
° File Handling in SAP both on application server and

presentation server.

Definition :
Batch Data Communication (BDC) is the process of transferring data
from one SAP System to another SAP system or from a non-SAP
system to SAP System.

Features :
e BDC is an automatic procedure.

e This method is used to transfer large amount of data that is available
In electronic medium.

e BDC can be used primarily when installing the SAP system and when
transferring data from a legacy system (external system).

e BDC uses normal transaction codes to transfer data.

Types of BDC :

° CLASSICAL BATCH INPUT (Session Method)

° CALL TRANSACTION

BATCH INPUT METHOD:
This method is also called as ‘CLASSICAL METHOD'.

Features:

e Asynchronous processing.
e Synchronous Processing in database update

e Transfer data for more than one transaction.
e Batch input processing log will be generated.
e During processing, no transaction is started until the previous

transaction has been written to the database.

Batch Input Processing

I- Sequential
file
Batch input program

Batch input function

\ 4

SAPRI P13

' Flight _
Customer connections Reservation
data data

Steps involved in Classical Batch Input :

e Analyze the datathat is to be transferred to the SAP system to
determine how the existing data should be mapped to the SAP data
structure.

e Generate SAP data structures for incorporation into the data export
program (SAP provides one method called Recording to generate the
SAP data structure and transaction code for this is SHDB).

e Read datain, often from a sequential file that has been exported from
another system or prepared by a data transfer program.

e Perform data conversions, if necessary.

e Prepare the data for batch input processing by storing the data in the
batch input data structure, BDCDATA.

e Generate a batch input session using the function modules
BDC OPEN_GROUP, BDC INSERT and BDC_CLOSE_GROUP (the
parameters to these function modules explained in the next slide).

e Process the session from System — Services — Batch Input
(Transaction code is SM35).

Function Modules & Parameters for Session Method

BDC_OPEN _GROUP

Client CLIENT

Session hame GROUP

Lock date HOLD

Delete session after KEEP
processing

BDC user name USER

v

Transaction code TCODE
BDC table DYNPROTAB

|
BDC_CLOSE_GROUP

Structure of the BDCDATA:

BDC Table

<program name>

<number 1>

<field 11>

<value 11>

<value 12>

<field 12>

<program name>

<number 2>

<field 21>

<value 21>

<field 22>

<value 22>

Field name Type Length Description
PROGHAM CHAR g BDC Module pool
DYNPRO NUMC 4 BDC Dynpro number
DYNBEGIN CHAR 1 BDC Starting a dynpro
FNAM CHAR 35 BDC Field name
FWVAL CHAR a0 BDC Field value

Recording (Transaction code SHDB)

Recording is a process that is provided by the SAP system to
generate the SAP data structure for batch data communication.

A sample recording for the transaction MKO1 is explained below.

Recording Step 1.
Starting screen of the recording (Transaction code SHDB)
Click “New Recording” button to new recording.

™ Transaction Recorder: Recording Overview
Becoding Edit Goto Spstem Help L

& || =l CERE 5 A0 a0 | EHE®@

Mew recording | &2 &¢ 0 F'n:ucess [Session [] Pragram [] Testdata [] Function madule

D atabase zelection for recordings
Recording: |* frrnn | (a8 Ii Created by l*—

Recording CreatedBy Date Time Tranzact. Screens 1

| |TESTREC DEUVELOP 15.81.288218:31:17(1 3 Z

=ZHBD[: DEVELOP 11.81.2808214:56:34(1 2 —

=SPF|RES1 DEVELOP 11.81.288218:51:83[1 13

=ZJBDE DEUVELOP 11.81.280218:88 451 3

=ZTM3 DEUVELOP 18.81.280217:47:37(1 o

=2TM2 DEVELOP 18.81.288217:18:13[1 12

=2TM1 DEVELOP 18.81.2808215:41:321 L

=TESTBDE DEUVELOP 18.81.2808211:82:28(1 2

=2HISHRE[:1 DEVELOP 18.81.2008218:46:085(1 5

=TESTBDE DEVELOP A9 .81.280214:084:-0881 6

=I.IRTEST DEUVELOP Bg.081.2802108:087:281 2

=ZHRISH DEUVELOP B7 .91.280216:17:-481 o

=ZHRISH DEVELOP B7 .81.280215:24:26/1 3

=ZMREE1 DEVELOP A7 .81.280211:43:281 3

=ZI"IRE[: DEUVELOP A7 .81.280211:481:211 L

iZJI]HH DEVELOP A3.81.2808217:26:291 2 =

[| [»]

DEY [1][555]* | SAP04 [IMNS | 15:03

Recording Step 2: Enter the recording name and the transaction for
which you want the recording and click “ Start Recording” Button.

= Tranzaction Recorder: RBecording Overview

Becording Edit Goto Systemn Help -
(e S Alceec S anaa EE@
“ D Mew recording | P S ﬂ Frocess D Seszion D Frograrn D Test data D Function rodule ﬂ
- Database selection for recordings
Recording: I* frmn I (= I Created by I*
Recording CreatedBy Date Time Tranzact. Screens m
TESTREC DEVELOP 15.81.288218:31:-171 3 =
__|euepC -5 Create Recording | —
SPARES1
[|zaepc -
= Recording |zrecur‘d1ng1
ZTH3
| UL Record first tranzaction
ZTHA _
1 TESTBDC Tranzaction code II"IH a1
ZKISHRECA v
) TESTBDC Start recarding
[JurTEST
ZKRISH
L o | 38
ZKRISH _I_I
ZHMRECA DEVELOFP 87.81.2088211:-:43:281 3
ZMRELC DEVELOFP a7.81.288211:-:41:211 5
ZJOHH DEVELOP 83 .81.288217:-2a6:291 2 =
1 [>]

[DEV 115581~ [5aP04 [IMS | 15:04

Recording Step 3: Enter sample data for the transaction.

™ Create Yendor: Initial Screen

(G2 ——) R Y e e

Every key s:oke will be recorded.

Recording Step 4. After entering all data for the transaction (here MK01),
the recording overview screen will be displayed. Then save the
recording. And click the “Program” button.

= [ranzaction Recorder: Recording Overview
Becordng Edit Goto Spstern Help -

||| Hdlec@l Mk onoa B38| @
“ DNEW recording | & S 'ﬂ Process DSession D\AF'rc-gram DTest data DFunctinn madule

Database selection for recordings
Recording: [zrECORDINGY fm | o | Createdby |»
Recording CreatedBy Date Time Tranzact. Screens
| |zrRECORDING1 |DEVELOP 15.81.2882(14:59:271 5
] [+]

[DEY 1115551~ [SAFD4 [INS | 1507

Recording Step 5: Enter the program name .

o = R e SR R R T RIREE SF)
| | " S anaal A

]
1

Recording Step 6: Enter the program attributes.
Click “Source Code” Button.

[— HAHAcCcee Mk anaa EFEQ
? e T =22 [[[B i

= ABAP: Program Attributes ZREPDRT1 Change

5 ample Text

Orginalarguege En

Cestsd [is.et.2e02 EVELOP
r—

ZRECO

Executable program

Test program

i
;

-
-
-
-
B
B
-
-
-
B
-
-
-
-

-
.

And the code generated was as below.

PERFORM BDC_DYNPRO
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_DYNPRO
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_DYNPRO
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_DYNPRO
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_DYNPRO
PERFORM BDC_FIELD

USING 'SAPMFO02K" '0107".
USING 'BDC_CURSOR' 'RF02K-KTOKK".
USING 'BDC_OKCODE’ '/00'.
USING 'RFO2K-LIFNR’ RECORD-LIFNR_001.
USING 'RFO02K-KTOKK" RECORD-KTOKK_002.
USING 'SAPMFO02K' '0110'".
USING 'BDC_CURSOR’ 'LFA1-SORTL",
USING 'BDC_OKCODE’ '/00'.
USING 'LFA1-NAME1" RECORD-NAME1_003.
USING 'LFA1-SORTL’ RECORD-SORTL_004.
USING 'LFA1-LAND1" RECORD-LAND1_005.
USING 'LFA1-SPRAS' RECORD-SPRAS_006.
USING 'SAPMF02K' '0120'".
USING 'BDC_CURSOR 'LFA1-KUNNR'.
USING 'BDC_OKCODE’ '/00'.
USING 'SAPMF02K'" '0130'.
USING 'BDC_CURSOR’ 'LFBK-BANKS(01)'.
USING 'BDC_OKCODE' '=ENTR".
USING 'SAPLSPO1' '0300'.
USING 'BDC_OKCODE" '=YES'.

PERFORM BDC_TRANSACTION USING 'MKO1'.

Sample BDC Program (Session Method):

REPORT Zreportl.
DATA: | BDCDATA LIKE BDCDATA OCCURS 0 WITH HEADER LINE.
DATA: BEGIN OF RECORD OCCURS 0, “Declaration of the data that is to be uploaded from
the file
LIFNR_001(016),
KTOKK_002(004),
NAME1 003(035),
SORTL_004(010),
LAND1 005(003),
SPRAS_006(002),
END OF RECORD.
START-OF-SELECTION.
PERFORM OPEN_GROUP.
*Uploading data from the local file C:\Vendorl.txt
CALL FUNCTION 'WS_UPLOAD'

EXPORTING
FILENAME ='C:\VENDOR1.TXT"
FILETYPE ='DAT’

TABLES

DATA_TAB = RECORD.
IF SY-SUBRC <> 0.
WRITE 'ERROR IN UPLOAD'.
ENDIF.

Sample BDC Program (Continues):
LOOP AT RECORD. “Filling the BDC table with data

PERFORM BDC_DYNPRO USING 'SAPMFO02K' '0107".

PERFORM BDC_FIELD USING 'BDC_CURSOR!
'RFO2K-KTOKK".

PERFORM BDC_FIELD USING 'BDC_OKCODE'
'/00".

PERFORM BDC_FIELD USING 'RFO2K-LIFNR’
RECORD-LIFNR_0O01.

PERFORM BDC_FIELD USING 'RFO2K-KTOKK'
RECORD-KTOKK_002.

PERFORM BDC_DYNPRO USING 'SAPMFO02K' '0110'.

PERFORM BDC_FIELD USING 'BDC_CURSOR'

'LFA1-SORTL".
PERFORM BDC_FIELD USING 'BDC_OKCODE'
'/00".

PERFORM BDC_FIELD USING 'LFA1-NAME1'
RECORD-NAME1_003.

PERFORM BDC_FIELD USING 'LFA1-SORTL'
RECORD-SORTL_004.

PERFORM BDC_FIELD USING 'LFA1-LAND1'
RECORD-LAND1_005.

Sample BDC Program (Continues):

PERFORM BDC_FIELD USING 'LFA1-SPRAS'
RECORD-SPRAS_006.

PERFORM BDC_DYNPRO USING 'SAPMF02K' '0120'.

PERFORM BDC_FIELD USING 'BDC_CURSOR'

'LFA1-KUNNR'.
PERFORM BDC_FIELD USING 'BDC_OKCODE'
'/00".

PERFORM BDC_DYNPRO USING 'SAPMF02K' '0130'.

PERFORM BDC_FIELD USING 'BDC_CURSOR'
'LFBK-BANKS(01)'.

PERFORM BDC_FIELD USING 'BDC_OKCODE'
'=ENTR'.

PERFORM BDC_DYNPRO USING 'SAPLSPO1' '0300'.

PERFORM BDC_FIELD USING 'BDC_OKCODE'
'=YES'".

PERFORM BDC_TRANSACTION USING 'MKO1'.

ENDLOORP.
PERFORM CLOSE_GROUP. “ Closing the BDC session

Sample BDC Program (Continues):

FORM OPEN_GROUP.
CALL FUNCTION 'BDC_OPEN_GROUP!
EXPORTING
CLIENT = SY-MANDT
GROUP ='SESSIONT'
USER = SY-UNAME
KEEP ="X.
IF SY-SUBRC <> 0.
WRITE 'ERROR IN OPEN_GROUP'.
ENDIF.
ENDFORM.

FORM BDC_DYNPRO USING PROGRAM DYNPRO.
CLEAR |_BDCDATA.
|_ BDCDATA-PROGRAM = PROGRAM.
| BDCDATA-DYNPRO = DYNPRO.
| BDCDATA-DYNBEGIN ="X".
APPEND |_BDCDATA.
ENDFORM.

Sample BDC Program (Continues):

FORM BDC_FIELD USING FNAM FVAL.
CLEAR |_BDCDATA.
| BDCDATA-FNAM = FNAM.
| BDCDATA-FVAL = FVAL.
APPEND |_BDCDATA.
ENDFORM.

FORM BDC_TRANSACTION USING TCODE.
CALL FUNCTION 'BDC_INSERT
EXPORTING TCODE = TCODE
TABLES DYNPROTAB =1_BDCDATA.
ENDFORM.

FORM CLOSE_GROUP.
CALL FUNCTION 'BDC_CLOSE_GROUP'.
ENDFORM. " CLOSE_GROUP

Session Overview Screen (Transaction Code : SM35)

Example transaction is MKO1(Vendor Creation)

Click “Process” Button
= Batch Input: Session Dverview HE E
Seszion Edit Goto Utliies Swstem Help -

[Ca@ a Dnan HE @

[E.ﬂmalysis Process GStatistics ELng = Recording ﬁ Eﬁ ﬂ] ﬁ? ? & E
Selection criteria
Sess: I*i Fram: Ii To: Ii Created by: I*i
‘ Mew | Incorect | Proceszed | In processing | In background | Being created | Locked |
Seszzion name Created by Date Time Lock date Autharizat, Statuz Tranzact, f
DZTEST DEVELOP 18.81.2808211:11:34 DEVELOP o
[|nysEssiomt |DEVELOP 18.81.208082108:57: DEVELOP Errars 1
=I'1'|'SESSII]N1 DEUELOP 18.81.2080218:56:48 DEVELOP Being created a
=M'|'SESSII]H DEUVELOP 168.81.2080218:52:47 DEVELOP Mew 1
=RF|J DEUELOP 89._81.2808213:37:23 DEVELOP Errars 3
B UEHKI DEUVELOP 68._81_.206212:41:81 DEVELOP In processing 1
=UENI'II DEVELOP 88.81.280212:48:80 DEVELOP Processed 1
=UEHHI DEUELOP 68 _81.20808212:37:35 DEUVELOP Proceszed 1
=UEHHI DEVELOP A8.81.280212:23:26 DEVELOFP Processed 1
=JHJHH DEUELOP B4 _81.280214:58:34 DEVELOP New a
=UUU DEUVELOP B4_81._.2002 144984 DEVELOP Being created a
iUUU DEUELOP B4_81.280214:-48:22 DEVELOP Being created a B
L | [+]

DEV (2119551 | 5AFP04 [INS | 11:44

Enter the processing options (like Foreground/ Background etc..)

11— _JI_J_;_,I '“J'JI_IJ_I_IIJJI_J

Foreground Processing:
First screen of the transaction MKO1(Vendor Creation)

[c— | = R T el @

Second screen of the Transaction MK0O1 SVendor Creation%
= Create Yendor: Address M= E
"~

“Wendor Edit Goto Extraz Environment Swestem Help

“(y | [ro0

HECee ZHE anaa RAE | @

i=R=Y

Wendor

-Address

|VENDOR12

Create Yendor: Address

Title:

I ame

Street

City

Diztrict
P.0.Box city
Courtry

I‘v"endmN ame

[

Search term

P.0. Box

Poztal code

PO box PCode

Region

Language key
Telephaone 1
Telephaone 2
Telebox

Intermetadd.

- Communications data

[En

Telex nurnber

Fax nurmber

Teletex number

[Data line

Home page |

[DEY [2] (555 | 54P04 [INS | 11:45

Last Screen of the Transaction MKO1 iVendor Creationi:

I E— = AR =l
W=R=Ns

Vendr [UENDOR1Z

Create Wendor, Payment transactions

=EMTH

Prompt for Saving the record:
Here OK_CODE_= YES

lagF=— ~FalceeCHr anaal==a

After processing the session, the status of the session is “Processed”

= B atch Input: Session Overview

Session Edit Goto Utlties Spsterm Help -~
& | | =] RGN 1 A8 RIRRE
.&nal}lsi& @F‘mcess GStatistics ELDQ B2 Recording ﬁ Eﬁ ﬂ] I;ﬁ? 'ﬁ Ei
Selection criteria
Sess: * Frarm: Ta: Created by: *
A% | K= | |nicomect | Proceszed | Ih procezsing | Ih background | Being created | Locked |
Seszion name Created by Date Time Lock date Authorizat, Status Tranzact. n
y SESSTONT DEVELOP [10.01.2002[11:48:36] [DEVELOP -Z
ZTEST DEVELDP 18.81.28082/11:11:34 DEVELDP Mew 1 L
HYSESSION1 (DEUELOP 18.81.2002108:57 47 DEVELOP Errors 1
HYSESSIOH1 (DEUELOP 18.681.2002108:56:-48 DEVELOP Being created (§]
HYSESSIOH DEVELOF 18.81.200218:52 - 47 DEVELOP Mew 1
RAJ DEVELOP 89 ._.81.280213:37:23 DEVELOP Errors 2
UEHKI DEVELOP g8 .81.286212:41:81 DEVELOP I processing 1
[JueEnKI DEVELOP g8 .81.280212:40:08 DEVELOP Processed 1
UEHKI DEVELDP B8 .81.280212:37:-3% DEVELDP Processed 1
UEHKI DEVELOP B8.81.280212:23:26 DEVELOP Processed 1
JEJEE DEVELOP B4.81.280214:50:34 DEVELOP Mew ({]
yuy DEVELOF B4.81.2002 144904 DEVELOP Being created 5]
yuy DEVELOP B4._081.2002 14:-48:22 DEVELOP Being created a =1
L] | D]

DEN [21 15551 = | SARO4 [INS | 11:43

CALL TRANSACTION METHOD :
This Is another method to transfer data from the legacy system.

Features:
e Synchronous processing. The system performs a database commit

immediately before and after the CALL TRANSACTION USING
statement.

e Updating the database can be either synchronous or asynchronous.
The program specifies the update type.

e Transfer datafor a single transaction.

e Transfers data for a sequence of dialog screens.

e No batch input processing log is generated.

The CALL TRANSACTION Statement

CALL TRANSACTION <transaction code>
USING <BDC table>
MODE <display mode>

UPDATE
MESSAGES INTO <messtab>

<update mode>

<display mode>;

A

Display all

E

Display only if there are errors

N

Display nothing

<update mode>:

S

Do not continue processing until
update has finished (synchronous)

A

Continue processing immediately

Sample Program (CALL TRANSACTION):
REPORT ZREPORTL1.
DATA: | BDCDATA LIKE BDCDATA OCCURS 0 WITH HEADER LINE.
DATA: BEGIN OF RECORD OCCURS 0,

LIFNR_001(016),

KTOKK_002(004),

NAME1 003(035),

SORTL_004(010),

LAND1 005(003),

SPRAS_006(002),

END OF RECORD.
START-OF-SELECTION.
*Uploading data from the local file C:\Vendorl.txt
CALL FUNCTION 'WS_UPLOAD’

EXPORTING
FILENAME ='C:\VENDOR11.TXT"
FILETYPE ='DAT

TABLES

DATA_TAB = RECORD.
IF SY-SUBRC <> 0.
WRITE 'ERROR IN UPLOAD'.
ENDIF.

Sample Program (CALL TRANSACTION):

LOOP AT RECORD.
PERFORM BDC_DYNPRO
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_DYNPRO
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_DYNPRO
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_DYNPRO
PERFORM BDC_FIELD
PERFORM BDC_FIELD
PERFORM BDC_DYNPRO
PERFORM BDC_FIELD

USING 'SAPMFO02K' '0107".
USING 'BDC_CURSOR' 'RF02K-KTOKK:".
USING 'BDC_OKCODE’ '/00'.
USING 'RFO2K-LIFNR" RECORD-LIFNR_001.
USING 'RFO2K-KTOKK" RECORD-KTOKK_002.
USING 'SAPMFO02K' '0110'".
USING 'BDC_CURSOR’ 'LFA1-SORTL".
USING 'BDC_OKCODE’ '/00'.
USING 'LFA1-NAME1’ RECORD-NAME1_00S3.
USING 'LFA1-SORTL’ RECORD-SORTL_004.
USING 'LFA1-LAND1" RECORD-LAND1_005.
USING 'LFA1-SPRAS' RECORD-SPRAS_006.
USING 'SAPMF02K" '0120'.
USING 'BDC_CURSOR 'LFA1-KUNNR'.
USING 'BDC_OKCODE’ '/00'.
USING 'SAPMF02K' '0130'.
USING 'BDC_CURSOR’ 'LFBK-BANKS(01)'.
USING '‘BDC_OKCODE' '=ENTR".
USING 'SAPLSPO1" '0300'.
USING 'BDC_OKCODE'" '=YES'.

PERFORM BDC_TRANSACTION USING 'MKO1'.

ENDLOOP.

Sample Program (CALL TRANSACTION):
FORM BDC _DYNPRO USING PROGRAM DYNPRO.
CLEAR |_BDCDATA.
| BDCDATA-PROGRAM = PROGRAM.
| BDCDATA-DYNPRO =DYNPRO.
| BDCDATA-DYNBEGIN ="'X"'. APPEND | BDCDATA.
ENDFORM.

FORM BDC_FIELD USING FNAM FVAL.

CLEAR |_BDCDATA.

| BDCDATA-FNAM = FNAM.

| BDCDATA-FVAL = FVAL. APPEND |I_BDCDATA.
ENDFORM.

FORM BDC_TRANSACTION USING TCODE.
CALL TRANSACTION TCODE USING |_BDCDATA

MODE 'A'. “Processing in fore-ground
ENDFORM.

Batch Input / CALL TRANSACTION - Comparision

Session CALL TRANSACTION

Return code No Yes

Database Update Synchronous Asynchronous/Synchronous

Processing Time-delayed Immediately

Transactions More than one Only One

Will not be
Error Log Will be created created

Exercise:

Write a batch input program for transaction MMO1 using following
data from a local file.

Material Material Basic Datal Basic Data2 Description Unit Of
type Group Measure

M BOH X X Materiall KG

Solution:
REPORT ZREPORTIL.

DATA: |_BDCDATA LIKE BDCDATA OCCURS 0 WITH HEADER LINE.
DATA: BEGIN OF RECORD OCCURS 0,

MBRSH_001(001),
MTART_002(004),
KZSEL_01_003(001),
KZSEL_02_004(001),
MAKTX_005(040),
MEINS_006(003),
MAKTX_007(040),

END OF RECORD.
START-OF-SELECTION.
*Uploading data from the local file C:\Vendorl.txt
CALL FUNCTION 'WS_UPLOAD'

EXPORTING
FILENAME ='C:\MARA.TXT"
FILETYPE ='DAT

TABLES

DATA_TAB = RECORD.

IF SY-SUBRC <> 0.
WRITE 'ERROR IN UPLOAD'.
ENDIF.

PERFORM OPEN_GROUP.
LOOP AT RECORD.
PERFORM BDC_DYNPRO USING 'SAPLMGMM' '0060'.
PERFORM BDC_FIELD USING 'BDC_CURSOR'
'‘RMMG1-MTART".
PERFORM BDC_FIELD USING 'BDC_OKCODE'
'/00".
PERFORM BDC_FIELD USING 'RMMG1-MBRSH'
RECORD-MBRSH_001.
PERFORM BDC_FIELD USING 'RMMG1-MTART
RECORD-MTART_002.
PERFORM BDC_DYNPRO USING 'SAPLMGMM' '0070'.
PERFORM BDC_FIELD USING 'BDC_CURSOR'
'MSICHTAUSW-DYTXT(02)'.
PERFORM BDC_FIELD USING 'BDC_OKCODE'
'=ENTR".

PERFORM BDC_FIELD USING 'MSICHTAUSW-KZSEL (01)'

RECORD-KZSEL 01_003.

PERFORM BDC_FIELD USING 'MSICHTAUSW-KZSEL (02)'
RECORD-KZSEL 02 _004.

PERFORM BDC_DYNPRO USING 'SAPLMGMM' '4004".

PERFORM BDC_FIELD USING 'BDC_OKCODE!
'/00".

PERFORM BDC_FIELD USING 'MAKT-MAKTX'
RECORD-MAKTX_005.

PERFORM BDC_FIELD USING 'BDC_CURSOR!
'MARA-MEINS'.

PERFORM BDC_FIELD USING 'MARA-MEINS'
RECORD-MEINS_006.

PERFORM BDC_DYNPRO USING 'SAPLMGMM' '4004".

PERFORM BDC_FIELD USING 'BDC_OKCODE!
'/00".

PERFORM BDC_FIELD USING 'BDC_CURSOR!
'MAKT-MAKTX'.

PERFORM BDC_FIELD USING '"MAKT-MAKTX'
RECORD-MAKTX_007.
PERFORM BDC_DYNPRO USING 'SAPLSPO1' '0300'.
PERFORM BDC_FIELD USING 'BDC_OKCODE'
'=YES'".
PERFORM BDC_TRANSACTION USING 'MMO1'".
ENDLOOP.

PERFORM CLOSE_GROUP.
FORM OPEN_GROUP.
CALL FUNCTION 'BDC_OPEN_GROUP’

EXPORTING
CLIENT =SY-MANDT
GROUP ='SESSIONT'
USER = SY-UNAME
KEEP ="X.

IF SY-SUBRC <> 0.
WRITE 'ERROR IN OPEN_GROUP".
ENDIF.
ENDFORM.

FORM BDC_DYNPRO USING PROGRAM DYNPRO.
CLEAR |_BDCDATA.
| BDCDATA-PROGRAM = PROGRAM.
| BDCDATA-DYNPRO = DYNPRO.
| BDCDATA-DYNBEGIN = "X".
APPEND | _BDCDATA.
ENDFORM.
FORM BDC_FIELD USING FNAM FVAL.
CLEAR |_BDCDATA.
| BDCDATA-FNAM = FNAM.
| BDCDATA-FVAL = FVAL.
APPEND |_BDCDATA.
ENDFORM.

FORM BDC_TRANSACTION USING TCODE.

CALL FUNCTION 'BDC_INSERT’
EXPORTING TCODE =TCODE
TABLES DYNPROTAB =1_BDCDATA.

ENDFORM.

FORM CLOSE_GROUP.

CALL FUNCTION 'BDC_CLOSE_GROUP'.

ENDFORM. " CLOSE_GROUP

ABAP/4 allows us to work with sequential files

e on the Application server

e 0N the Presentation server

WORKING WITH FILES ON THE APPLICATION SERVER:

ABAP/4 provides three statements for handling files:

e OPEN DATASET

e CLOSE DATASET
e DELETE DATASET
e READ DATASET

e TRANSFER

OPEN DATASET

Opens the specified file. If you do not use any additions, the file is
opened for reading in binary mode. It returns SY-SUBRC = 0 if the file
IS opened successfully. Otherwise SY-SUBRC = 8.

Syntax
OPEN DATASET <dsn> [Additions].

Additions:

FOR INPUT (Default)
FOR OUTPUT

FOR APPENDING

IN BINARY MODE

IN TEXT MODE

AT POSITION p

TYPE ctrl

MESSAGE mess
FILTER f

O©CONOOhwWNE

1. OPEN DATASET <dsn> FOR INPUT.
This statement tries to open the field in 'read/update' mode (as long
as the user has write authorization).If the user does not have write
authorization, the system opens the file in 'read' mode. If this fails, an
error occurs.

2. OPEN DATASET <dsn> FOR OUTPUT.

This statement tries to open the file in 'write/update' mode as long as
the user has read authorization. If the authorization is missing, the
system opens the file in 'write' mode. If the file already exists, its

existing content is deleted. If the file does not exist, the system
creates it.

3. OPEN DATASET <dsn> FOR APPENDING.
This statement tries to open the file in 'append' mode. If the file is
already open, the system moves to the end of the file. When you open

a file using FOR APPENDING, attempting to read the file sets SY-
SUBRC to 4. The system display the end of the file.

Note :

You can only use one of the additions 1 to 3in a single statement

4. OPEN DATASET <dsn> IN BINARY MODE.

The contents of the file are not structured in lines in the READ
DATASET or TRANSFER operations. Instead, they are input or output
as a stream. You do not have to specify the IN BINARY MODE

addition explicitly.

5. OPEN DATASET <dsn> IN TEXT MODE.

If you use this addition, the contents of the file are structured in lines.
Each time you use the READ DATASET or TRANSFER statement, the
system reads or writes a single line. If the data object to which you
are transferring the data is too big, it is padded with spaces. If it is too
small, the data record is truncated.

Note
You can only use one of additions 4 and 5 in a single statement.

6. OPEN DATASET <dsn> AT POSITION p.

Use this addition to specify the explicit starting position p in the file
(calculated in bytes from the start of the file). The next read or write
operation will start at this position. You cannot position before the
beginning of the file. Do not use this addition with the IN TEXT MODE
addition, since the physical representation of a text file depends
heavily on the underlying operating system.

If you use OPEN ... FOR OUTPUT AT POSITION ..., the contents of the
file are destroyed if the file already existed. To avoid this, use OPEN ...
FOR INPUT AT POSITION ... instead.

Note

OPEN ... AT POSITION p does not work for file positions where p >=2
giga bytes.

7. OPEN DATASET <dsn> TYPE ctrl .

You can use the ctrl field to specify further file attributes. The
contents of this field are passed unchanged and unchecked to the

operating system. The syntax for the attributes is dependent on the
operating system.

8. OPEN DATASET <dsn> MESSAGE msg.

If an error occurs while the file is being opened, the corresponding
operating system message is placed in field msgqg.

Example

DATA: dsn(20) VALUE '/usr/test.dat’,
msg(100).
OPEN DATASET dsn FOR INPUT MESSAGE msg.
IF sy-subrc <> 0.
WRITE / msg.

ENDIF.

9. OPEN DATASET <dsn> FILTER F.

If you are working under UNIX or Windows NT, you can specify an
operating system command in the field f.

Example

Under UNIX, the following statements opens the file dsn and writes
the data to the file in compressed form because of the UNIX command
‘compress’:

DATA dsn(20) VALUE '/usr/test.dat'.
OPEN DATASET dsn FOR OUTPUT FILTER ‘compress'.

CLOSE DATASET
Closes the specified file.

Syntax
CLOSE DATASET <dsn>.

DELETE DATASET

Deletes the file specified file. If it deletes the file successfully it
returns SY-SUBRC = 0. Otherwise returns SY-SUBRC =4. The
possible reasons for failing are:

e The file does not exist.
e The fileis a directory.
e The fileis a program that is currently running.

READ DATASET
Used to read a record from a file.

Syntax
READ DATASET dsn INTO f.

Addition : LENGTH len.
The actual length of the data objet read is placed in the field len after
the read access. len must be defined as a variable. A syntax error will

occur if you define it as a constant. The following example displays 9.
Example

DATA: len TYPE i,

text(30) TYPE ¢ VALUE 'Beethoven’,

dir(30) TYPE ¢ VALUE '/usr/test.dat’.

OPEN DATASET dir IN TEXT MODE.
TRANSFER text TO dir. CLOSE DATASET dir.
OPEN DATASET dir IN TEXT MODE.

READ DATASET dir INTO text LENGTH len.
CLOSE DATASET dir. WRITE/ len.

TRANSFER statement
Used to write a record into a file.

Syntax
TRANSFER f TO dsn.

Transfers the data object f to a sequential file whose name is
specified in dsn. dsn can be a field or a literal. You must already have
opened the file. . If the specified file is not already open, TRANSFER
attempts to open the file FOR OUTPUT IN BINARY MODE. If this is not

possible, a runtime error occurs.f can be a field, a string, or a
structure.

Addition : LENGTH len.
The length of the data object to be written is defined by len, where len
can be either a constant or a variable. If len is smaller than the length
of the data object f, the system truncates character fields (C, N, D, T,
X,P, STRING) on the right. With type | or F fields, unexpected results
may occur if len is shorter than the default length for the field type.

WORKING WITH FILES ON THE PRESENTATION SERVER:

To work with files on the presentation server , SAP provides some
special function modules WS _UPLOAD, for reading from a file, and
WS _DOWNLOAD, for writing into the file. An internal table must be

used as an interface between the program and the function module.

Writing data to a file on the presentation server:

To write data from an internal table to a file on the presentation
server, use function module WS_DOWNLOAD. The most important
parameters that are exported are as follows:

BIN_FILESIZE

File Length for binary files. A length of zero or the length which is
larger than the number of bytes in the internal table (width * number
of lines) causes an exception.

CODEPAGE
Only for download in DOS

FILENAME

The name of the file that is to be generated on the presentation
server(if necessary with predefined path name). If the path doesn’t
exist or the file cannot be opened, an exception will be raised.

FILETYPE

The target format of the file. Valid values are:

‘ASC’ : ASCII format, the table is stored with rows.

‘DAT’. ASCIl format as in 'ASC', additional column separation
with TABSs.

‘BIN’ : Binary format (specification of BIN_FILESIZE required)

‘DBF’ : Stored as Dbase file (always with DOS code page).

‘IBM’ : ASCII format as in 'ASC' with IBM code page conversion
(DOS)

MODE
Writing mode (‘A’ = Append , empty = Overwrite)

FILELENGTH
The length of the generated file is returned.

TABLE PARAMETER
DATA TAB
The source internal table whose contents are downloaded into a
file.

EXCEPTIONS
The exceptions for the function module WS_DOWNLOAD are

FILE_ OPEN_ERROR The file cannot be opened.
FILE WRITE_ERROR The data could not be loaded into the file.
INVALID FILE SIZE The parameter BIN_FILESIZE is either zero

or greater that the table size.

Reading data from a file on the presentation server:

To read data from the presentation server into an internal table we
use the function module WS_UPLOAD. The most important
parameters that are exported are as follows:

CODEPAGE
Only for download in DOS.

FILENAME
Name of the file

FILETYPE
The source file type. Valid values are:
‘BIN’ : Binary files.
‘ASC’: ASCII files, text files with end-of-line markers.
‘DAT’. The file is loaded line by line into the transferred table.
Tabs in the file mean a change of field.

Export Parameters for WS_UPLOAD:
FILELENGTH - Number of bytes transferred.

Table parameters for WS_UPLOAD:
DATA_TAB - Internal target table, to which the data is loaded.

Exceptions for WS_UPLOAD:
CONVERSION_ERROR - Errors in the data conversion.
FILE_ OPEN_ERROR - System cannot open file.
FILE-READ ERROR - System cannot read from file
INVALID_TABLE_WIDTH - Invalid table structure
INVALID_TYPE - Invalid value for parameter FILETYPE

Summary

e Batch Data Communication (BDC) is the process of transferring data
from one SAP System to another SAP system or from a non-SAP

system to SAP System.

e Two methods of BDCs are there. Session method and CALL
TRANSACTION method.

e Working with files on application server and presentation server.

e ABAP/4 statements OPEN DATASET, READ DATASET, DELETE
DATASET, CLOSE DATASET, TRANSFER.

e And special function modules for reading and writing data files on
presentation server, WS _UPLOAD and WS_DOWNLOAD.

