
Batch Data Communication

Objective:

Batch Data Communication

Types of BDC and differences between them

File Handling in SAP both on application server and

presentation server.

Batch Data Communication

Definition :
Batch Data Communication (BDC) is the process of transferring data
from one SAP System to another SAP system or from a non-SAP
system to SAP System.

Features :
BDC is an automatic procedure.
This method is used to transfer large amount of data that is available
in electronic medium.
BDC can be used primarily when installing the SAP system and when
transferring data from a legacy system (external system).
BDC uses normal transaction codes to transfer data.

Batch Data Communication

Types of BDC :

CLASSICAL BATCH INPUT (Session Method)

CALL TRANSACTION

Batch Data Communication

BATCH INPUT METHOD:

This method is also called as ‘CLASSICAL METHOD’.

Features:

Asynchronous processing.
Synchronous Processing in database update
Transfer data for more than one transaction.
Batch input processing log will be generated.
During processing, no transaction is started until the previous
transaction has been written to the database.

Batch Data Communication

Batch Input Processing

Queue fileQueue file

Sequential
file

Batch input programBatch input program

Batch input functionBatch input function

SAP R/3SAP R/3SAP R/3

CustomerCustomer
datadata

FlightFlight
connectionsconnections ReservationReservation

datadata

Batch Data Communication
Steps involved in Classical Batch Input :

Analyze the data that is to be transferred to the SAP system to
determine how the existing data should be mapped to the SAP data
structure.
Generate SAP data structures for incorporation into the data export
program (SAP provides one method called Recording to generate the
SAP data structure and transaction code for this is SHDB).
Read data in, often from a sequential file that has been exported from
another system or prepared by a data transfer program.
Perform data conversions, if necessary.
Prepare the data for batch input processing by storing the data in the
batch input data structure, BDCDATA.
Generate a batch input session using the function modules
BDC_OPEN_GROUP, BDC_INSERT and BDC_CLOSE_GROUP (the
parameters to these function modules explained in the next slide).
Process the session from System → Services → Batch Input
(Transaction code is SM35).

Batch Data Communication

Function Modules & Parameters for Session Method

Client
Session name
Lock date
Delete session after
 processing
BDC user name

Client
Session name
Lock date
Delete session after
 processing
BDC user name

CLIENT
GROUP
HOLD
KEEP

USER

CLIENT
GROUP
HOLD
KEEP

USER

Transaction code
BDC table
Transaction code
BDC table

TCODE
DYNPROTAB
TCODE
DYNPROTAB

BDC_OPEN_GROUPBDC_OPEN_GROUPBDC_OPEN_GROUP

BDC_INSERTBDC_INSERTBDC_INSERT

BDC_CLOSE_GROUPBDC_CLOSE_GROUPBDC_CLOSE_GROUP

Batch Data Communication

Structure of the BDCDATA:

BDC Table

Program Screen Start Field name Field contentsProgramProgram Screen Screen StartStart Field nameField name Field contentsField contents

<program name> <number 1> x
<field 11> <value 11>
<field 12> <value 12>

<program name> <number 2> x
<field 21> <value 21>
<field 22> <value 22>

<program name> <number 1> x
<field 11> <value 11>
<field 12> <value 12>

<program name> <number 2> x
<field 21> <value 21>
<field 22> <value 22>

Batch Data Communication

Recording (Transaction code SHDB)

Recording is a process that is provided by the SAP system to
generate the SAP data structure for batch data communication.

A sample recording for the transaction MK01 is explained below.

Batch Data Communication

Recording Step 1:
Starting screen of the recording (Transaction code SHDB)
Click “New Recording” button to new recording.

Batch Data Communication

Recording Step 2: Enter the recording name and the transaction for
which you want the recording and click “Start Recording” Button.

Batch Data Communication

Recording Step 3: Enter sample data for the transaction.

Every key stroke will be recorded.

Batch Data Communication

Recording Step 4: After entering all data for the transaction (here MK01),
the recording overview screen will be displayed. Then save the
recording. And click the “Program” button.

Batch Data Communication

Recording Step 5: Enter the program name .

Batch Data Communication

Recording Step 6: Enter the program attributes.
Click “Source Code” Button.

Batch Data Communication

And the code generated was as below.
PERFORM BDC_DYNPRO USING 'SAPMF02K' '0107'.
PERFORM BDC_FIELD USING 'BDC_CURSOR' 'RF02K-KTOKK'.
PERFORM BDC_FIELD USING 'BDC_OKCODE’ '/00'.
PERFORM BDC_FIELD USING 'RF02K-LIFNR’ RECORD-LIFNR_001.
PERFORM BDC_FIELD USING 'RF02K-KTOKK’ RECORD-KTOKK_002.
PERFORM BDC_DYNPRO USING 'SAPMF02K' '0110'.
PERFORM BDC_FIELD USING 'BDC_CURSOR’ 'LFA1-SORTL'.
PERFORM BDC_FIELD USING 'BDC_OKCODE’ '/00'.
PERFORM BDC_FIELD USING 'LFA1-NAME1’ RECORD-NAME1_003.
PERFORM BDC_FIELD USING 'LFA1-SORTL’ RECORD-SORTL_004.
PERFORM BDC_FIELD USING 'LFA1-LAND1' RECORD-LAND1_005.
PERFORM BDC_FIELD USING 'LFA1-SPRAS' RECORD-SPRAS_006.
PERFORM BDC_DYNPRO USING 'SAPMF02K' '0120'.
PERFORM BDC_FIELD USING 'BDC_CURSOR 'LFA1-KUNNR'.
PERFORM BDC_FIELD USING 'BDC_OKCODE’ '/00'.
PERFORM BDC_DYNPRO USING 'SAPMF02K' '0130'.
PERFORM BDC_FIELD USING 'BDC_CURSOR’ 'LFBK-BANKS(01)'.
PERFORM BDC_FIELD USING 'BDC_OKCODE’ '=ENTR'.
PERFORM BDC_DYNPRO USING 'SAPLSPO1' '0300'.
PERFORM BDC_FIELD USING 'BDC_OKCODE’ '=YES'.
PERFORM BDC_TRANSACTION USING 'MK01'.

Batch Data Communication
Sample BDC Program (Session Method):
REPORT Zreport1.
DATA: I_BDCDATA LIKE BDCDATA OCCURS 0 WITH HEADER LINE.
DATA: BEGIN OF RECORD OCCURS 0, “Declaration of the data that is to be uploaded from

the file
LIFNR_001(016),
KTOKK_002(004),
NAME1_003(035),
SORTL_004(010),
LAND1_005(003),
SPRAS_006(002),

END OF RECORD.
START-OF-SELECTION.
PERFORM OPEN_GROUP.
*Uploading data from the local file C:\Vendor1.txt

CALL FUNCTION 'WS_UPLOAD'
EXPORTING

FILENAME = 'C:\VENDOR1.TXT '
FILETYPE = 'DAT'

TABLES
DATA_TAB = RECORD.

IF SY-SUBRC <> 0.
WRITE 'ERROR IN UPLOAD'.

ENDIF.

Batch Data Communication
Sample BDC Program (Continues):
LOOP AT RECORD. “Filling the BDC table with data

PERFORM BDC_DYNPRO USING 'SAPMF02K' '0107'.
PERFORM BDC_FIELD USING 'BDC_CURSOR'

'RF02K-KTOKK'.
PERFORM BDC_FIELD USING 'BDC_OKCODE'

'/00'.
PERFORM BDC_FIELD USING 'RF02K-LIFNR'

RECORD-LIFNR_001.
PERFORM BDC_FIELD USING 'RF02K-KTOKK'

RECORD-KTOKK_002.
PERFORM BDC_DYNPRO USING 'SAPMF02K' '0110'.
PERFORM BDC_FIELD USING 'BDC_CURSOR'

'LFA1-SORTL'.
PERFORM BDC_FIELD USING 'BDC_OKCODE'

'/00'.
PERFORM BDC_FIELD USING 'LFA1-NAME1'

RECORD-NAME1_003.
PERFORM BDC_FIELD USING 'LFA1-SORTL'

RECORD-SORTL_004.
PERFORM BDC_FIELD USING 'LFA1-LAND1'

RECORD-LAND1_005.

Batch Data Communication
Sample BDC Program (Continues):

PERFORM BDC_FIELD USING 'LFA1-SPRAS'
RECORD-SPRAS_006.

PERFORM BDC_DYNPRO USING 'SAPMF02K' '0120'.
PERFORM BDC_FIELD USING 'BDC_CURSOR'

'LFA1-KUNNR'.
PERFORM BDC_FIELD USING 'BDC_OKCODE'

'/00'.
PERFORM BDC_DYNPRO USING 'SAPMF02K' '0130'.
PERFORM BDC_FIELD USING 'BDC_CURSOR'

'LFBK-BANKS(01)'.
PERFORM BDC_FIELD USING 'BDC_OKCODE'

'=ENTR'.
PERFORM BDC_DYNPRO USING 'SAPLSPO1' '0300'.
PERFORM BDC_FIELD USING 'BDC_OKCODE'

'=YES'.
PERFORM BDC_TRANSACTION USING 'MK01'.

ENDLOOP.
PERFORM CLOSE_GROUP. “ Closing the BDC session

Batch Data Communication
Sample BDC Program (Continues):

FORM OPEN_GROUP.
CALL FUNCTION 'BDC_OPEN_GROUP'

EXPORTING
CLIENT = SY-MANDT
GROUP = 'SESSION1'
USER = SY-UNAME
KEEP = 'X'.

IF SY-SUBRC <> 0.
WRITE 'ERROR IN OPEN_GROUP'.
ENDIF.
ENDFORM.

FORM BDC_DYNPRO USING PROGRAM DYNPRO.
CLEAR I_BDCDATA.
I_BDCDATA-PROGRAM = PROGRAM.
I_BDCDATA-DYNPRO = DYNPRO.
I_BDCDATA-DYNBEGIN = 'X'.
APPEND I_BDCDATA.

ENDFORM.

Batch Data Communication
Sample BDC Program (Continues):

FORM BDC_FIELD USING FNAM FVAL.
CLEAR I_BDCDATA.
I_BDCDATA-FNAM = FNAM.
I_BDCDATA-FVAL = FVAL.
APPEND I_BDCDATA.

ENDFORM.

FORM BDC_TRANSACTION USING TCODE.
CALL FUNCTION 'BDC_INSERT'

EXPORTING TCODE = TCODE
TABLES DYNPROTAB = I_BDCDATA.

ENDFORM.

FORM CLOSE_GROUP.
CALL FUNCTION 'BDC_CLOSE_GROUP'.
ENDFORM. " CLOSE_GROUP

Batch Data Communication

Session Overview Screen (Transaction Code : SM35)
Example transaction is MK01(Vendor Creation)
Click “Process” Button

Batch Data Communication

Enter the processing options (like Foreground/ Background etc..)

Batch Data Communication

Foreground Processing:
First screen of the transaction MK01(Vendor Creation)

Batch Data Communication

Second screen of the Transaction MK01 (Vendor Creation)

Batch Data Communication

Last Screen of the Transaction MK01 (Vendor Creation):

Batch Data Communication

Prompt for Saving the record:
Here OK_CODE = YES

Batch Data Communication

After processing the session, the status of the session is “Processed”

Batch Data Communication

CALL TRANSACTION METHOD :

This is another method to transfer data from the legacy system.

Features:
Synchronous processing. The system performs a database commit
immediately before and after the CALL TRANSACTION USING
statement.
Updating the database can be either synchronous or asynchronous.
The program specifies the update type.
Transfer data for a single transaction.
Transfers data for a sequence of dialog screens.
No batch input processing log is generated.

Batch Data Communication

The CALL TRANSACTION Statement

CALL TRANSACTION <transaction code>

 USING <BDC table>
 MODE <display mode>
 UPDATE <update mode>
 MESSAGES INTO <messtab>

CALL TRANSACTION <transaction code>

 USING <BDC table>
 MODE <display mode>
 UPDATE <update mode>
 MESSAGES INTO <messtab>

A Display all

E Display only if there are errors

N Display nothing

A Display all
E Display only if there are errors
N Display nothing

S Do not continue processing until
update has finished (synchronous)

A Continue processing immediately

S Do not continue processing until
update has finished (synchronous)

A Continue processing immediately

<display mode>:<display mode>:<display mode>:

<update mode>:<update mode>:<update mode>:

Batch Data Communication

Sample Program (CALL TRANSACTION):
REPORT ZREPORT1.
DATA: I_BDCDATA LIKE BDCDATA OCCURS 0 WITH HEADER LINE.
DATA: BEGIN OF RECORD OCCURS 0,

LIFNR_001(016),
KTOKK_002(004),
NAME1_003(035),
SORTL_004(010),
LAND1_005(003),
SPRAS_006(002),

END OF RECORD.
START-OF-SELECTION.
*Uploading data from the local file C:\Vendor1.txt

CALL FUNCTION 'WS_UPLOAD'
EXPORTING

FILENAME = 'C:\VENDOR11.TXT '
FILETYPE = 'DAT'

TABLES
DATA_TAB = RECORD.

IF SY-SUBRC <> 0.
WRITE 'ERROR IN UPLOAD'.

ENDIF.

Batch Data Communication
Sample Program (CALL TRANSACTION):
LOOP AT RECORD.

PERFORM BDC_DYNPRO USING 'SAPMF02K' '0107'.
PERFORM BDC_FIELD USING 'BDC_CURSOR' 'RF02K-KTOKK'.
PERFORM BDC_FIELD USING 'BDC_OKCODE’ '/00'.
PERFORM BDC_FIELD USING 'RF02K-LIFNR’ RECORD-LIFNR_001.
PERFORM BDC_FIELD USING 'RF02K-KTOKK’ RECORD-KTOKK_002.
PERFORM BDC_DYNPRO USING 'SAPMF02K' '0110'.
PERFORM BDC_FIELD USING 'BDC_CURSOR’ 'LFA1-SORTL'.
PERFORM BDC_FIELD USING 'BDC_OKCODE’ '/00'.
PERFORM BDC_FIELD USING 'LFA1-NAME1’ RECORD-NAME1_003.
PERFORM BDC_FIELD USING 'LFA1-SORTL’ RECORD-SORTL_004.
PERFORM BDC_FIELD USING 'LFA1-LAND1' RECORD-LAND1_005.
PERFORM BDC_FIELD USING 'LFA1-SPRAS' RECORD-SPRAS_006.
PERFORM BDC_DYNPRO USING 'SAPMF02K' '0120'.
PERFORM BDC_FIELD USING 'BDC_CURSOR 'LFA1-KUNNR'.
PERFORM BDC_FIELD USING 'BDC_OKCODE’ '/00'.
PERFORM BDC_DYNPRO USING 'SAPMF02K' '0130'.
PERFORM BDC_FIELD USING 'BDC_CURSOR’ 'LFBK-BANKS(01)'.
PERFORM BDC_FIELD USING 'BDC_OKCODE’ '=ENTR'.
PERFORM BDC_DYNPRO USING 'SAPLSPO1' '0300'.
PERFORM BDC_FIELD USING 'BDC_OKCODE’ '=YES'.
PERFORM BDC_TRANSACTION USING 'MK01'.

ENDLOOP.

Batch Data Communication
Sample Program (CALL TRANSACTION):
FORM BDC_DYNPRO USING PROGRAM DYNPRO.
CLEAR I_BDCDATA.
I_BDCDATA-PROGRAM = PROGRAM.
I_BDCDATA-DYNPRO = DYNPRO.
I_BDCDATA-DYNBEGIN = 'X'. APPEND I_BDCDATA.

ENDFORM.

FORM BDC_FIELD USING FNAM FVAL.
CLEAR I_BDCDATA.
I_BDCDATA-FNAM = FNAM.
I_BDCDATA-FVAL = FVAL. APPEND I_BDCDATA.

ENDFORM.

FORM BDC_TRANSACTION USING TCODE.
CALL TRANSACTION TCODE USING I_BDCDATA

MODE 'A'. “Processing in fore-ground
ENDFORM.

Batch Data Communication

Batch Input / CALL TRANSACTION - Comparision

 Batch input CALL TRANSACTION

Return code No Yes

Error logging Yes No

Processing Time-delayed Immediately

 Session CALL TRANSACTION

Return code No Yes

Database Update Synchronous Asynchronous/Synchronous

Processing Time-delayed Immediately

Transactions More than one Only One

Error Log Will be created
Will not be
created

Batch Data Communication

Exercise:

Write a batch input program for transaction MM01 using following
data from a local file.

Material Material Basic Data1 Basic Data2 Description Unit Of
type Group Measure

M BOH X X Material1 KG

Batch Data Communication

Solution:
REPORT ZREPORT1.
DATA: I_BDCDATA LIKE BDCDATA OCCURS 0 WITH HEADER LINE.
DATA: BEGIN OF RECORD OCCURS 0,
MBRSH_001(001),
MTART_002(004),
KZSEL_01_003(001),
KZSEL_02_004(001),
MAKTX_005(040),
MEINS_006(003),
MAKTX_007(040),
END OF RECORD.

START-OF-SELECTION.
*Uploading data from the local file C:\Vendor1.txt
CALL FUNCTION 'WS_UPLOAD'
EXPORTING
FILENAME = 'C:\MARA.TXT '
FILETYPE = 'DAT'

TABLES
DATA_TAB = RECORD.

Batch Data Communication

IF SY-SUBRC <> 0.
WRITE 'ERROR IN UPLOAD'.

ENDIF.
PERFORM OPEN_GROUP.
LOOP AT RECORD.

PERFORM BDC_DYNPRO USING 'SAPLMGMM' '0060'.
PERFORM BDC_FIELD USING 'BDC_CURSOR'

'RMMG1-MTART'.
PERFORM BDC_FIELD USING 'BDC_OKCODE'

'/00'.
PERFORM BDC_FIELD USING 'RMMG1-MBRSH'

RECORD-MBRSH_001.
PERFORM BDC_FIELD USING 'RMMG1-MTART'

RECORD-MTART_002.
PERFORM BDC_DYNPRO USING 'SAPLMGMM' '0070'.
PERFORM BDC_FIELD USING 'BDC_CURSOR'

'MSICHTAUSW-DYTXT(02)'.
PERFORM BDC_FIELD USING 'BDC_OKCODE'

'=ENTR'.

Batch Data Communication

PERFORM BDC_FIELD USING 'MSICHTAUSW-KZSEL(01)'
RECORD-KZSEL_01_003.

PERFORM BDC_FIELD USING 'MSICHTAUSW-KZSEL(02)'
RECORD-KZSEL_02_004.

PERFORM BDC_DYNPRO USING 'SAPLMGMM' '4004'.
PERFORM BDC_FIELD USING 'BDC_OKCODE'

'/00'.
PERFORM BDC_FIELD USING 'MAKT-MAKTX'

RECORD-MAKTX_005.
PERFORM BDC_FIELD USING 'BDC_CURSOR'

'MARA-MEINS'.
PERFORM BDC_FIELD USING 'MARA-MEINS'

RECORD-MEINS_006.
PERFORM BDC_DYNPRO USING 'SAPLMGMM' '4004'.
PERFORM BDC_FIELD USING 'BDC_OKCODE'

'/00'.
PERFORM BDC_FIELD USING 'BDC_CURSOR'

'MAKT-MAKTX'.

Batch Data Communication

PERFORM BDC_FIELD USING 'MAKT-MAKTX'
RECORD-MAKTX_007.

PERFORM BDC_DYNPRO USING 'SAPLSPO1' '0300'.
PERFORM BDC_FIELD USING 'BDC_OKCODE'

'=YES'.
PERFORM BDC_TRANSACTION USING 'MM01'.

ENDLOOP.
PERFORM CLOSE_GROUP.

FORM OPEN_GROUP.
CALL FUNCTION 'BDC_OPEN_GROUP'

EXPORTING
CLIENT = SY-MANDT
GROUP = 'SESSION1'
USER = SY-UNAME
KEEP = 'X'.

IF SY-SUBRC <> 0.
WRITE 'ERROR IN OPEN_GROUP'.
ENDIF.
ENDFORM.

Batch Data Communication

FORM BDC_DYNPRO USING PROGRAM DYNPRO.
CLEAR I_BDCDATA.
I_BDCDATA-PROGRAM = PROGRAM.
I_BDCDATA-DYNPRO = DYNPRO.
I_BDCDATA-DYNBEGIN = 'X'.
APPEND I_BDCDATA.

ENDFORM.
FORM BDC_FIELD USING FNAM FVAL.

CLEAR I_BDCDATA.
I_BDCDATA-FNAM = FNAM.
I_BDCDATA-FVAL = FVAL.
APPEND I_BDCDATA.

ENDFORM.

FORM BDC_TRANSACTION USING TCODE.
CALL FUNCTION 'BDC_INSERT'

EXPORTING TCODE = TCODE
TABLES DYNPROTAB = I_BDCDATA.

ENDFORM.
FORM CLOSE_GROUP.
CALL FUNCTION 'BDC_CLOSE_GROUP'.
ENDFORM. " CLOSE_GROUP

File Handling in SAP

ABAP/4 allows us to work with sequential files

on the Application server

on the Presentation server

File Handling in SAP

WORKING WITH FILES ON THE APPLICATION SERVER:

ABAP/4 provides three statements for handling files:

OPEN DATASET

CLOSE DATASET

DELETE DATASET

READ DATASET

TRANSFER

File Handling in SAP
OPEN DATASET

Opens the specified file. If you do not use any additions, the file is
opened for reading in binary mode. It returns SY-SUBRC = 0 if the file
is opened successfully. Otherwise SY-SUBRC = 8.

Syntax
OPEN DATASET <dsn> [Additions].
Additions:

1. FOR INPUT (Default)
2. FOR OUTPUT
3. FOR APPENDING
4. IN BINARY MODE
5. IN TEXT MODE
6. AT POSITION p
7. TYPE ctrl
8. MESSAGE mess
9. FILTER f

File Handling in SAP

1. OPEN DATASET <dsn> FOR INPUT.
This statement tries to open the field in 'read/update' mode (as long
as the user has write authorization).If the user does not have write
authorization, the system opens the file in 'read' mode. If this fails, an
error occurs.

2. OPEN DATASET <dsn> FOR OUTPUT.
This statement tries to open the file in 'write/update' mode as long as
the user has read authorization. If the authorization is missing, the
system opens the file in 'write' mode. If the file already exists, its
existing content is deleted. If the file does not exist, the system
creates it.

File Handling in SAP

3. OPEN DATASET <dsn> FOR APPENDING.

This statement tries to open the file in 'append' mode. If the file is
already open, the system moves to the end of the file. When you open
a file using FOR APPENDING, attempting to read the file sets SY-
SUBRC to 4. The system display the end of the file.

Note :

You can only use one of the additions 1 to 3 in a single statement

File Handling in SAP

4. OPEN DATASET <dsn> IN BINARY MODE.

The contents of the file are not structured in lines in the READ
DATASET or TRANSFER operations. Instead, they are input or output
as a stream. You do not have to specify the IN BINARY MODE
addition explicitly.

5. OPEN DATASET <dsn> IN TEXT MODE.
If you use this addition, the contents of the file are structured in lines.
Each time you use the READ DATASET or TRANSFER statement, the
system reads or writes a single line. If the data object to which you
are transferring the data is too big, it is padded with spaces. If it is too
small, the data record is truncated.

Note
You can only use one of additions 4 and 5 in a single statement.

File Handling in SAP

6. OPEN DATASET <dsn> AT POSITION p.

Use this addition to specify the explicit starting position p in the file
(calculated in bytes from the start of the file). The next read or write
operation will start at this position. You cannot position before the
beginning of the file. Do not use this addition with the IN TEXT MODE
addition, since the physical representation of a text file depends
heavily on the underlying operating system.

If you use OPEN ... FOR OUTPUT AT POSITION ..., the contents of the
file are destroyed if the file already existed. To avoid this, use OPEN ...
FOR INPUT AT POSITION ... instead.

Note
OPEN ... AT POSITION p does not work for file positions where p >= 2
giga bytes.

File Handling in SAP

7. OPEN DATASET <dsn> TYPE ctrl .
You can use the ctrl field to specify further file attributes. The
contents of this field are passed unchanged and unchecked to the
operating system. The syntax for the attributes is dependent on the
operating system.

8. OPEN DATASET <dsn> MESSAGE msg.

If an error occurs while the file is being opened, the corresponding
operating system message is placed in field msg.

Example
DATA: dsn(20) VALUE '/usr/test.dat',

msg(100).
OPEN DATASET dsn FOR INPUT MESSAGE msg.
IF sy-subrc <> 0.
WRITE / msg.
ENDIF.

File Handling in SAP

9. OPEN DATASET <dsn> FILTER f.

If you are working under UNIX or Windows NT, you can specify an
operating system command in the field f.

Example
Under UNIX, the following statements opens the file dsn and writes
the data to the file in compressed form because of the UNIX command
'compress' :

DATA dsn(20) VALUE '/usr/test.dat'.
OPEN DATASET dsn FOR OUTPUT FILTER 'compress'.

File Handling in SAP

CLOSE DATASET

Closes the specified file.

Syntax

CLOSE DATASET <dsn>.

DELETE DATASET

Deletes the file specified file. If it deletes the file successfully it
returns SY-SUBRC = 0. Otherwise returns SY-SUBRC = 4. The
possible reasons for failing are:

The file does not exist.
The file is a directory.
The file is a program that is currently running.

File Handling in SAP

READ DATASET
Used to read a record from a file.

Syntax
READ DATASET dsn INTO f.

Addition : LENGTH len.
The actual length of the data objet read is placed in the field len after
the read access. len must be defined as a variable. A syntax error will
occur if you define it as a constant. The following example displays 9.

Example
DATA: len TYPE i,

text(30) TYPE c VALUE 'Beethoven',
dir(30) TYPE c VALUE '/usr/test.dat'.
OPEN DATASET dir IN TEXT MODE.
TRANSFER text TO dir. CLOSE DATASET dir.
OPEN DATASET dir IN TEXT MODE.
READ DATASET dir INTO text LENGTH len.
CLOSE DATASET dir. WRITE / len.

File Handling in SAP

TRANSFER statement
Used to write a record into a file.

Syntax
TRANSFER f TO dsn.
Transfers the data object f to a sequential file whose name is
specified in dsn. dsn can be a field or a literal. You must already have
opened the file. . If the specified file is not already open, TRANSFER
attempts to open the file FOR OUTPUT IN BINARY MODE. If this is not
possible, a runtime error occurs.f can be a field, a string, or a
structure.

Addition : LENGTH len.
The length of the data object to be written is defined by len, where len
can be either a constant or a variable. If len is smaller than the length
of the data object f, the system truncates character fields (C, N, D, T,
X,P, STRING) on the right. With type I or F fields, unexpected results
may occur if len is shorter than the default length for the field type.

File Handling in SAP

WORKING WITH FILES ON THE PRESENTATION SERVER:

To work with files on the presentation server , SAP provides some

special function modules WS_UPLOAD, for reading from a file, and

WS_DOWNLOAD, for writing into the file. An internal table must be

used as an interface between the program and the function module.

File Handling in SAP

Writing data to a file on the presentation server:

To write data from an internal table to a file on the presentation
server, use function module WS_DOWNLOAD. The most important
parameters that are exported are as follows:

BIN_FILESIZE
File Length for binary files. A length of zero or the length which is

larger than the number of bytes in the internal table (width * number
of lines) causes an exception.

CODEPAGE
Only for download in DOS

FILENAME
The name of the file that is to be generated on the presentation

server(if necessary with predefined path name). If the path doesn’t
exist or the file cannot be opened, an exception will be raised.

File Handling in SAP

FILETYPE
The target format of the file. Valid values are:
‘ASC’ : ASCII format, the table is stored with rows.
‘DAT’: ASCII format as in 'ASC', additional column separation

with TABs.
‘BIN’ : Binary format (specification of BIN_FILESIZE required)
‘DBF’ : Stored as Dbase file (always with DOS code page).
‘IBM’ : ASCII format as in 'ASC' with IBM code page conversion

(DOS)

MODE
Writing mode (‘A’ = Append , empty = Overwrite)

FILELENGTH
The length of the generated file is returned.

File Handling in SAP

TABLE PARAMETER
DATA_TAB

The source internal table whose contents are downloaded into a
file.

EXCEPTIONS
The exceptions for the function module WS_DOWNLOAD are

FILE_OPEN_ERROR The file cannot be opened.

FILE_WRITE_ERROR The data could not be loaded into the file.

INVALID_FILE_SIZE The parameter BIN_FILESIZE is either zero

or greater that the table size.

File Handling in SAP

Reading data from a file on the presentation server:

To read data from the presentation server into an internal table we
use the function module WS_UPLOAD. The most important
parameters that are exported are as follows:

CODEPAGE
Only for download in DOS.

FILENAME
Name of the file

FILETYPE
The source file type. Valid values are:

‘BIN’ : Binary files.
‘ASC’: ASCII files, text files with end-of-line markers.
‘DAT’: The file is loaded line by line into the transferred table.

Tabs in the file mean a change of field.

File Handling in SAP

Export Parameters for WS_UPLOAD:

FILELENGTH - Number of bytes transferred.

Table parameters for WS_UPLOAD:
DATA_TAB - Internal target table, to which the data is loaded.

Exceptions for WS_UPLOAD:
CONVERSION_ERROR - Errors in the data conversion.
FILE_OPEN_ERROR - System cannot open file.
FILE-READ_ERROR - System cannot read from file
INVALID_TABLE_WIDTH - Invalid table structure
INVALID_TYPE - Invalid value for parameter FILETYPE

File Handling in SAP

Summary

Batch Data Communication (BDC) is the process of transferring data

from one SAP System to another SAP system or from a non-SAP

system to SAP System.

Two methods of BDCs are there. Session method and CALL

TRANSACTION method.

Working with files on application server and presentation server.

ABAP/4 statements OPEN DATASET, READ DATASET, DELETE

DATASET, CLOSE DATASET, TRANSFER.

And special function modules for reading and writing data files on

presentation server, WS_UPLOAD and WS_DOWNLOAD.

