Objectives

In this Chapter we will discuss

— Overview of LDB
— Usage of LDB in ABAP Program
— Advantages of LDB

Two ways of accessing data from database tables

— Accessing data using SELECT.

You can read and analyze data from all database tables
known to the SAP system by using SELECT statement with

its different clauses.
— Accessing data using Logical Database(LDB).

Logical databases provide a method for accessing data in
database tables which differs from the SELECT statement.
You can link a logical database to an ABAP/4 report program
as an attribute , it then supplies the report program with a set
of hierarchically structured table lines which can be taken
from different database tables.

Report with SELECT statements

Report
Tables spfli, sflight, sbook.
SELECT * from spfli where ...
<processing block>
SELECT * from sflight where ...
<processing block>
SELECT * from sbook where ...
<processing block>
ENDSELECT.
ENDSELECT.
ENDSELECT.

Report with LDB

Report
Tables spfli, sflight, sbook.
Get spfli.
<processing block>
Get sflight.
<processing block>
Get sbook.
<processing block>

An easy-to-use standard user interface
Meaningful data selection
Central authorization checks for database accesses

Check functions which check that user input is complete , correct
and plausible

Good read access performance while retaining the hierarchical data
view determined by the application logic

Create and design your own selection screen versions

Go to transaction ‘SE36° .Click F4 for list of LDBs’ . You will get the following screen .
Fill up the relevant fields and pick up the required LDB .

&) |< H @@ D HE T o0 BEERE 2o
I ogical Database Builder {Dispilay Mode)

R estrictions

LDE rname
Shaort text
Logical node
T able name
Created by

Lazt changed by

| |t [EH | B3|

Documentation

|6%9 Display

| oot (1) 510 2l csduxD2 | IMS

Logical databases allow you to program several different tasks centrally . You
use the Logical database to perform the following tasks :

— If several reports read the same data, you can code the read accesses in a single LDB.

— If you want to use the same user interface for several reports , you can implement this easily with
the selection screens of logical database .

— Authorization checks for central data are coded centrally in logical database .

— If you want to improve response times , logical databases permit you to take a number of
measures to achieve this .

e Structure
e Selections

« Database program

Structure of LDB

The structure of a logical database is usually based on the foreign
key relationships between hierarchical tables in the R/3 System.

Logical databases have a tree-like structure, which can be
defined as follows:

— Thereis asingle node at the highest level. This is known as the
root node.

— Each node can have one or several branches.

— Each node is derived from one other node.

Structure of LDB

LFAT

LFEk I

LFE I

LFC I

Selections

The selections in alogical database are defined using the
normal statements for defining selection screens, that is,

PARAMETERS
SELECT-OPTIONS
SELECTION-SCREEN

—Example

SELECT-OPTIONS SLIFNR FOR LFAI-LIFNR.
PARAMETERS PBUKRS LIKE LFB1-BUKRS FOR
TABLE LFBI1.

Selections

— Dynamic Selections

The tables defined in the structure can have dynamic selections using the following
code in the Selections Include program

SELECTION-SCREEN DYNAMIC SELECTION FOR TABLE <tbnam>

— Field Selections

The tables for which field selection is defined can be called from the ABAP/4 program
using GET <tbnam> Fields <f1><fn> addition . The code for field selection in the
Selections Include program is :

SELECTION-SCREEN FIELD SELECTION FOR TABLE <tbnam>

Database Program

The name of the database program of a logical database <ldb>
conforms to the naming convention SAPDB<Idb>.

It serves as a container for subroutines, which the ABAP runtime
environment calls when a logical database is processed.

Database Program

— Subroutines in LDB

FORM LDB_PROCESS_INIT

Called once only before the logical database is processed.
It prepares it to be called more than once by the function module
LDB_PROCESS.

FORM INIT

Called once only before the selection screen is processed.

FORM PBO

Called before the selection screen is displayed,
each time it is displayed. Consequently, it is only called when you
use the logical database with an executable program,

not with the function module LDB_PROCESS

Database Program

— Subroutines in LDB

FORM PAI

Called when the user interacts with the selection screen.
Consequently, it is only called when you use the logical database
with an executable program, not with the function module
LDB_PROCESS.

FORM LDB_PROCESS CHECK_SELECTIONS

Called instead of the subroutine PAI if the logical database is called
using the function module LDB_PROCESS without a

selection screen.

This subroutine can check the selections passed in the

function module interface.

Database Program

— Subroutines in LDB

FORM PUT_<node>

Called in the sequence defined in the structure.
Reads the data from the node <node> and uses the

PUT <node>.

Statement to trigger a corresponding GET event in the ABAP
runtime environment.

e Structure

Efﬂ1 I
————————EEB1 I

LFC
BkPF

e Selections in the Selection Include

SELECT-OPTIONS: SLIFNR FOR LFA1-LIFNR,
SBUKRS FOR LFB1-BUKRS,
SGJAHR FOR LFC1-GJAHR,
SBELNR FOR BKPF-BELNR.

* DATABASE PROGRAM OF THE LOGICAL
* DATABASE TEST_LDB *
PROGRAM SAPDBTEST_LDB DEFINING
DATABASE TEST_LDB.

TABLES: LFAL,
LFB1,
LFC1,
BKPF.

K e e *
FORM INIT.

ENDFORM. "INIT

* *

* PBO of selection screen (always before selection
*screen

FORM PBO.

ENDFORM. "PBO

FORM PAI USING FNAME MARK.
CASE FNAME.

WHEN 'SLIFNR".

WHEN 'SBUKRS'.

WHEN 'SGJAHR'.

WHEN 'SBELNR'.

ENDCASE.
ENDFORM. "PAI

FORM PUT_LFAL.
SELECT * FROM LFA1l
WHERE LIFNR IN SLIFNR.

PUT LFAL1.
ENDSELECT.
ENDFORM. "PUT_LFA1l
K e e *
* Call event GET LFB1
* *

FORM PUT_LFB1.
SELECT * FROM LFB1
WHERE LIFNR = LFA1-LIFNR

AND BUKRS IN SBULRS.

CASE FNAME.
WHEN 'SLIFNR".

WHEN 'SBUKRS'.
WHEN 'SGJAHR'.
WHEN 'SBELNR'.

ENDCASE.
ENDFORM. "PAI

K e e *
PUT LFB1.

ENDSELECT.
ENDFORM. "PUT _LFB1
K e e *
* Call event GET LFC1
* *

FORM PUT_LFC1.
SELECT * FROM LFC1
WHERE LIFNR = LFA1-LIFNR
AND BUKRS = LFB1-BUKRS
AND GJAHR IN SGJAHR.
PUT LFC1.
ENDSELECT.

ENDFORM. "PUT_LFC1

K e e *
* Call event GET BKPF
* *

FORM PUT_BKPF.
SELECT * FROM BKPF
WHERE BUKRS = LFB1-BUKRS
AND BELNR IN SBELNR
AND GJAHR IN SGJAHR.
PUT BKPF.
ENDSELECT.

ENDFORM. "PUT_BKPF

Relation between PUT and GET statements

Logical database Feport

el (3| |
— a0

Relation between PUT and GET statements

REPORT DEMO.

NODES: SPFLI,SFLIGHT.

GET SFLIGHT.

WRITE: / SPFLI-CARRID, SPFLI-CONNID.

@

- Connections

Airline carrier = to (U
Dep. arport IFrankfurt

Dest. airport IBerlin

Departure date [129sx01 01 ta [199508531

hl 23 | 200 to | S00

el | 10 to | =0

* To check whether a logical database is correct and complete , choose

Check on the initial screen.Then see a screen which displays these checks:

Z] 0000 aoBECceeDEE e a8 FEE
L ogical Database Builder {Dispiay Mode)

Does logical database exist?
Does short text exist?
Does structure exist?
Do selections axist?

Do selection texts exist?
Does database program exist?
I syntax of database program carrect?

Two methods for database selections
Comparison between the two methods
Components of LDB

eTask of LDB

Advantages of LDB

Linking LDB in ABAP Report
eSearching LDB

Example of LDB

*Checking LDB

e Exercise 1

— Write a report for getting the Purchasing document number using
LDB ‘EMM’

REPORT Z LOG_DATA_EXP1 .

TABLES: EKKO.

*Get the data from the LDB
GET EKKO.

IF SY-SUBRC EQ 0.

*Write purchasing document number

WRITE: / EKKO-EBELN.
ENDIF.

e Exercise 2
— Write a report for getting the Purchasing document number using

LDB ‘EMM’ using the GET statement with FIELDS addition

REPORT Z LOG_DATA_EXP1 .

TABLES: EKKO.

*Get only the purchasing document number from the LDB
GET EKKO FIELDS EBELN.

IF SY-SUBRC EQ 0.

*Write the purchasing document number
WRITE: / EKKO-EBELN.

ENDIF.

e Exercise 3
— Write a report for getting the Purchasing document number using
LDB ‘EMM’ using the GET LATE statement

REPORT Z LOG_DATA_EXP3.

TABLES: EKKO, EKPO, EKET.

* This GET statement will be executed after all GET statements

GET EKKO LATE FIELDS EBELN .
IF SY-SUBRC EQ 0.

*Write the purchasing document number

WRITE: / '"Purchasing Document number ', EKKO-EBELN.

ENDIF.

e EXxercise 3

— Write a report for getting the Purchasing document number using
LDB ‘EMM’ using the GET statement with FIELDS addition

GET EKPO.
IF SY-SUBRC EQ 0.

* Write the material number

WRITE: / 'Material Number', EKPO-MATNR.
ENDIF.

GET EKET.

IF SY-SUBRC EQ 0.

* Write the quantity
WRITE: /'Quantity’, EKET-WEMNG.

ENDIF

» Exercise 4
— Write a report for hiding the fields on the selection screen generated by

the LDB ‘EMM’

REPORT Z LOG_DATA_EXP4 .
TABLES: EKKO, EKPO.

AT SELECTION-SCREEN OUTPUT.

* Loop at screen internal table

LOOP AT SCREEN .

IF SCREEN-NAME ='%_EM_WERKS_% APP_%-TEXT".
SCREEN-INVISIBLE ='1' .

MODIFY SCREEN.

ENDIF.

» Exercise 4
— Write a report for hiding the fields on the selection screen generated by
the LDB ‘EMM’

IF SCREEN-NAME ="'EM_WERKS-LOW'.
SCREEN-INVISIBLE ='1".
SCREEN-INPUT ="0".

MODIFY SCREEN.
ENDIF.

IF SCREEN-NAME ="'EM_WERKS-HIGH'.
SCREEN-INVISIBLE ="'1".
SCREEN-INPUT ="0'".

MODIFY SCREEN.

ENDIF.

» Exercise 4
— Write a report for hiding the fields on the selection screen generated by
the LDB ‘EMM’

IF SCREEN-NAME ='%_EM_WERKS % APP_%-VALU PUSH".
SCREEN-INVISIBLE ="'1' .
MODIFY SCREEN.

ENDIF.

ENDLOOP.

START-OF-SELECTION.

GET EKKO LATE.

IF SY-SUBRC EQ O.

e EXxercise 4

— Write a report for hiding the fields on the selection screen generated by
the LDB ‘EMM’

WRITE: / 'Purchasing Document Number ', EKKO-EBELN.
ENDIF.

GET EKPO FIELDS MATNR.

IF SY-SUBRC EQ O.

WRITE: / 'Material Number ', EKPO-MATNR.

ENDIF.

