
© SAP AG 2004, Models Enterprise Java Beans / 1

Overview Enterprise Java Beans

Using EJBs as Web Dynpro Model

Contents:

Using EJBs as Web Dynpro Model

© SAP AG 2004, Models Enterprise Java Beans / 2

After completing this lesson, you will be able to:

Understand what EJBs are.

Use EJBs as Model for Web Dynpro applications.

Using EJBs as Web Dynpro Model: Objectives

© SAP AG 2004, Models Enterprise Java Beans / 3

After completing this topic, you will be able to:

Understand what EJBs are.

Enterprise Java Beans: Topic Objectives

Components
J2EE applications provide their functions in various components. These are always dependent on a
specific runtime environment (container) when they are executed.

J2EE specifies the following main types of components:

Client components
This is usually an application that is outside of the J2EE server, which accesses components that are
also external to the J2EE server. Client applications are usually combined in jar-archives.

Web components
This includes HTML pages, servlets, JSPs and pictures (.gif or.jpeg files), which are combined in a war-
archive.

EJB components
These are one or more Enterprise Beans, which are combined in a jar-archive.

© SAP AG 2004, Models Enterprise Java Beans / 4

Components

A J2EE application can consist of the following components:

CORBA Client

COM Client

SOAP
Client

Java Client

Web Browser

Applet

EJB
components

Web
components

Client
components

Persistence
components

J2EE Server

Web Container

EJB Container

The Parts of an Enterprise Bean
To develop an enterprise bean, you must provide the following files:

Deployment descriptor: An XML file that specifies information about the bean such as its persistence
type and transaction attributes. The deploytool utility creates the deployment descriptor when you step
through the New Enterprise Bean wizard.

Enterprise bean class: Implements the methods defined in the following interfaces.

Interfaces: The remote and home interfaces are required for remote access. For local access, the local
and local home interfaces are required. (Please note that these interfaces are not used by message-driven
beans.)

Helper classes: Other classes needed by the enterprise bean class, such as exception and utility classes.

You package the files in the preceding list into an EJB JAR file, the module that stores the enterprise bean.
An EJB JAR file is portable and may be used for different applications. To assemble a J2EE application,
you package one or more modules—such as EJB JAR files—into an EAR file, the archive file that holds
the application. When you deploy the EAR file that contains the bean’s EJB JAR file, you also deploy the
enterprise bean onto the J2EE server.

© SAP AG 2004, Models Enterprise Java Beans / 5

What Makes Up An EJB Component ?

Assembly

Archive (.ear)

Application
Assembler

Deployment

Deployer

Deployment
tools

EJB Container

Bean developer

Development

Archive (.jar)

Deployment DescriptorEnterprise
Bean

Home-
/Component
Interfaces

Helper
Classes

EJB types
3 different versions of the Enterprise Bean are available:
Session Beans Usually implement transactions or process flows, which are executed

as services that are performed for clients.
Entity Beans Represent business objects. These are associated persistent objects that

contain data from a database.
Message Driven Beans Also implement transactions or process flows, but are triggered by

receiving a message.

© SAP AG 2004, Models Enterprise Java Beans / 6

Enterprise Java Beans Types

Enterprise Bean types are distinguished by their area of implementation,
communication type and lifetime.

Enterprise Java BeanEnterprise Java Bean

Session BeanSession Bean Entity BeanEntity Bean Message Driven BeanMessage Driven Bean

Stateless
Session Bean
Stateless

Session Bean
Stateful

Session Bean
Stateful

Session Bean

Container Managed
Persistence

Container Managed
Persistence

Bean Managed
Persistence

Bean Managed
Persistence

EJB 1.1 EJB 2.0

Asynchronous
communication

Synchronous
communication

Session Beans
Session Beans implement specific functions, which you make available to clients, such as purchase order
entry, bank transfers etc. A session bean can in turn access other Enterprise Beans or services for the EJB
container.
Session objects are always short-lived. A Session Bean usually only exists for as long as the session lasts.
This means that there is a connection between the client and the EJB container.

Stateful Session Bean
The respective session object must be able to trace the client state across the various steps involved for
business processes that are divided between several dialog steps (as a conversation). These types of
business process, which can cover several method calls or transactions, have been implemented using
Stateful Session Beans.

Stateless Session Beans
This type of bean is used for business processes, which are initiated from the client via a method call. The
state of the client is only valid during the method call.

© SAP AG 2004, Models Enterprise Java Beans / 7

Session Beans

Purpose: Session Beans usually represent
business processes.

Characteristic: Stateless Session Bean (SLB).
Stateful Session Bean (SFB).

Collective SFB: Assigned to a client
usage: SLB: No dedicated client assignment.

Persistence: Transient.
Lifetime defined by the Client Process
(Session duration).

Session BeanSession Bean

Stateless
Session Bean
Stateless

Session Bean
Stateful

Session Bean
Stateful

Session Bean

Entity Beans
Entity Beans in their most simple form, correspond conceptionally to a table line in a relational database.
They represent persistent objects, meaning that they encapsulate data from a persistent memory, usually a
database. In doing so, they represent an interface between the business logic and the database and give
clients transaction-secure access to data.
Entity objects are persistent (long-lived), since their state is saved to the database.
An additional feature of entity objects is that several clients can access them in parallel. The EJB container
is responsible for capturing problems that can occur during competitive access, for instance by using
synchronization.

© SAP AG 2004, Models Enterprise Java Beans / 8

Entity Beans

Purpose: Entity Beans represent data (usually from
DBMS).

Characteristic Bean Managed Persistence (BMP).
Container Managed Persistence (CMP).

Collective Typically collective usage by several clients
usage:

Persistence: Persistent
State remains in the persistent memory
(such as the DB) even after the container
is terminated.

Entity BeanEntity Bean

Bean Managed
Persistence

Bean Managed
Persistence

Container Managed
Persistence

Container Managed
Persistence

© SAP AG 2004, Models Enterprise Java Beans / 9

EJB, Big Picture

J2EE Server

Database

EJB Client

EJB ContainerEJB Container

Product
Entity Bean

Customer
Entity Bean

Order
Entity Bean

CreateOrder
Session Bean

Session Bean
Is thought to represent business
process
Provides state management

Entity Bean
Is thought to represent business object
Memory representation of persistent
object

Bean Managed Persistence
Persistence management to be coded
by EJB developer, thus allowing higher
flexibility

Container Managed Persistence
Persistence management automatically
done by EJB container
Declarative mapping of container-
managed fields to table columns
outside Java code (XML)

Message Driven Bean
The client uses asynchronous communication for MDBs to execute the business logic for the bean.
Communication uses the JMS log. The client acts as a message producer, whilst the MDB is a message
consumer here.
The basis for use of Message Driven Beans is to transfer the JMS communication model to the EJB
Specification 2.0 that contains the two central communication models (Point-to-Point and
Publish/Subscribe). MDBs are not directly connected with queues here or entered as a subscriber.
Connection to the Messaging System takes place via the EJB container, which receives the incoming
messages and forwards these to an MDB instance.

Lifecycle of an MDB
A Message Driven Bean has a relatively short lifecycle. When a message is received from the client, the
onMessage() method is accessed by the container and the message is transferred as a parameter. The
Message Driven Bean only exists for as long as the onMessage() method is being processed.

© SAP AG 2004, Models Enterprise Java Beans / 10

Message Driven Beans

Purpose: Represents message recipient. A Message
Driven Bean is a stateless component,
which is accessed by messages.

Characteristic There is only one bean type.

Collective There is no direct client assignment.
Bean usage: “listens” to a JMS channel.

Persistence: Transient.
Lost during
container
termination.

The Deployment Descriptor
The deployment descriptor is a well-formed XML file called ejb-jar.xml contained in ejb-jar archive’s
subdirectory META-INF. It describes the structure and runtime behaviour of a bean and allows
customizing and reusing the bean without changing the source code

Covered meta data:

bean name

names of bean‘s components class files

security issues

persistence mechanism

transactional behaviour

references to other beans, data sources and other resources used

© SAP AG 2004, Models Enterprise Java Beans / 11

The Deployment Descriptor (DD)

ejb-jar.xml

1 <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE ejb-jar PUBLIC "-//Sun
Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

2 <ejb-jar>
3 <description>My first EJB</description>
4 <display-name>HelloWorld</display-name>
5 <enterprise-beans>
6 <session>
7 <ejb-name>HelloWorldBean</ejb-name>
8 <home>com.sap.training.HelloWorldHome</home>
9 <remote>com.sap.training.HelloWorld</remote>
10 <local-home>com.sap.training.HelloWorldLocalHome</local-home>
11 <local>com.sap.training.HelloWorldLocal</local>
12 <ejb-class>com.sap.training.HelloWorldBean</ejb-class>
13 <session-type>Stateless</session-type>
14 <transaction-type>Container</transaction-type>
15 </session>
16 </enterprise-beans>
17 </ejb-jar>

Deployment descriptors contain information on how components are
installed on the respective application server (declarative specification).

application.xml
Describes the standard J2EE properties of the complete application and the referenced modules. In
particular, you must specify the URL where the J2EE application is stored on the J2EE Engine.

application-j2ee-engine.xml (SAP specific)
Contains additional entries specific to the SAP J2EE Engine. You do not need to make any entries for the
car rental application in this deployment descriptor.

ejb-j2ee-engine.xml (SAP specific)
Contains entries specific to the J2EE Engine.

persistent.xml (SAP specific)
Describes the mapping of entity beans and their CMP fields to the corresponding database tables and table
fields.

ejb-jar.xml
Describes the standard J2EE properties of the Enterprise JavaBeans.

web-j2ee-engine.xml (SAP specific)
Contains entries concerning Web resources specific to the SAP J2EE Engine.

web.xml
Describes the standard J2EE properties of the Web resources (JSPs, servlets, and so on). These properties
include mapping information, security entries (access restrictions and security roles), and entries
concerning EJB reference names.

© SAP AG 2004, Models Enterprise Java Beans / 12

Types Of Deployment Descriptors

Enterprise Application, Web Application, and EJB Assembly projects
(and their respective archive files: EAR, WAR, and JAR) contain
deployment descriptors.

These are automatically generated when the projects are created and
when they are modified.

application-j2se-engine.xml
data-sources-aliases.xml

application.xml

ejb-j2se-engine.xml
persistent.xml

ejb-jar.xml

web-j2se-engine.xml
web.xml

J2EE standard: SAP specific DD:

How does EJB work?
Now that we have our EJB-Jar file containing our Bean, Home and Component interfaces and
Deployment Descriptor, Let’s take a look at how all of these pieces fit together and why Home and
Component interfaces are needed and how the EJB Container uses them.

Deployment
This work step has not been standardized in the J2EE Specification. Each container product has its own
solution here.
During deployment of an .ear file, the following steps are usually executed by the container:

The system checks whether components in the EJB Jar file adhere to the rules in the EJB specification.

The container tool generates the EJB and home classes for the Enterprise Beans.
Methods in the remote object correspond to methods in the Enterprise Bean.
However, methods in the remote object contain additional code that is added using entries in the
deployment descriptor. The remote object then acts as a proxy object.

The container tool generates all stub and skeleton classes that are required to support RMI-IIOP.

© SAP AG 2004, Models Enterprise Java Beans / 13

The Deployment Process

Assembly

Archive (.ear)

Application
Assembler

Deployment

Deployer

Deployment
tools

DD: application.xml

EJB Container

Bean developer

Development

Archive (.jar)

DD: ejb-jar.xmlEnterprise
Bean

Home-
/Component
Interfaces

Helper
Classes

Entries in the DD
are used to
generate
additional classes

EJB Verifier
Container Compiler
Remote Compiler

Archive (.ear)

How does EJB work?
The container generated classes for EJBHome, EJBLocalHome, EJBObject and EJBLocalObject will
include the code for managing the bean’s security, concurrency, persistence, remote access, transaction
handling, … issues transparently to the application

© SAP AG 2004, Models Enterprise Java Beans / 14

How Does EJB Work ?

J2EE Server

Java VM

EJB Container

Client

Client

Client
Client

HOME-/
Lifecycle Interface

COMPONENT-/
Business Interface

Lifecycle Methods

Business Methods

Callback Methods

Bean Instance

Generated
Delegates

The Home Interface
The home interface provides life-cycle methods for creating, destroying, and locating beans. These life-
cycle behaviors are separated out of the remote interface because they represent behaviors that are not
specific to a single bean instance.
The home interface may also provide definitions for home business methods for entity beans. Home
business methods are methods that are not specific to a particular bean instance. While the developer
writes the home interface, the container creates the implementation for client interaction.
In essence, the home interface provides bean management and life cycle methods.

© SAP AG 2004, Models Enterprise Java Beans / 15

The Home Interface

A bean's home interface specifies methods that allow the client to
create, remove, and find objects of the same type (^Factory).

Remote Home Interface

1 import javax.ejb.EJBHome;
2 import java.rmi.RemoteException;
3 import javax.ejb.CreateException;
4 public interface HelloWorldHome extends EJBHome {
5 public HelloWorld create() throws CreateException,
6 RemoteException;
7 }

MyHelloWorldBean.javaHelloWorldHome

Local Home Interface

1 import javax.ejb.EJBLocalHome;
2 import javax.ejb.CreateException;
3 public interface HelloWorldLocalHome extends EJBLocalHome {
4 public HelloWorldLocal create() throws CreateException;
5 }

MyHelloWorldBean.javaHelloWorldLocalHome

The Component Interface
Enterprise JavaBean functionality is obtained through the bean's component interface, which defines the
business methods visible to, and callable by, the client. Again, the developer writes the component
interface, and the container provides the communication glue that is created at deploy time.
The client uses a home interface's create() method to create a logical instance to a bean's component. In the
entity bean section, we will see that a component interface may
also be returned by findByPrimaryKey() and other finder methods.

© SAP AG 2004, Models Enterprise Java Beans / 16

The Component Interface

Enterprise JavaBean functionality is obtained through the bean's
component interface, which defines the business methods visible to,
and callable by, the client.

.Remote Component Interface

1 import javax.ejb.EJBObject;
2 import java.rmi.RemoteException;
3 public interface HelloWorld extends EJBObject {
4 public String sayHello(String name) throws RemoteException;
5 public String sayHelloWorld() throws RemoteException;
6 }

MyHelloWorldBean.javaHelloWorld

Local Component Interface

1 import javax.ejb.EJBLocalObject;
2 public interface HelloWorldLocal extends EJBLocalObject {
3 public String sayHello(String name);
4 public String sayHelloWorld();
5 }

MyHelloWorldBean.javaHelloWorldLocal

The Enterprise JavaBean Class
This class provides the implementation of the business logic and methods for the EJB container (callbacks
and lifecycle events). It has to implements one of the javax.ejb.EnterpriseBean derived interfaces
SessionBean, EntityBean or MessageDrivenBean.

At Runtime, Instances of the Enterprise JavaBean class is fully managed by the container and it can only
indirectly used by its clients

The diagram above shows a Stateless Session Bean.
Line 4: Session Beans implement the javax.ejb.SessionBean interface
Line 6-8: Lifecycle method for the container, which corresponds to the method with the same

name in the Home Interface.
Lines 9-14: Callback methods in the container that are proposed by javax.ejb.SessionBean and

implemented in the Session Bean.
Line 15-20: Business methods that correspond to the methods of the remote interface with the same

name.

© SAP AG 2004, Models Enterprise Java Beans / 17

The Enterprise JavaBean, Example “HelloWorld”

HelloWorldBean

Enterprise JavaBean

1 import javax.ejb.SessionBean;
2 import javax.ejb.SessionContext;
3 import javax.ejb.CreateException;

4 public class HelloWorldBean implements SessionBean {
5 private SessionContext myContext;
6 public void ejbCreate() throws CreateException {
7 // TODO : Implement
8 }
9 public void ejbRemove() {}
10 public void ejbActivate() {}
11 public void ejbPassivate() {}
12 public void setSessionContext(SessionContext context) {
13 myContext = context;
14 }
15 public String sayHello(String name) {
16 return "Hello "+name;
17 }
18 public String sayHelloWorld() {
19 return "Hello World!";
20 }
21 }

Lifecycle Methods

Business Methods

Callback Methods

Naming Conventions
Because enterprise beans are composed of multiple parts, it’s useful to follow a naming convention for
your applications.

Local Home vs. Remote Home Interface
There are some issues to keep in mind when using local interfaces:

The beans must run in the same VM -- they are, after all, local.
Parameters running under a local interface are sent by reference rather than being
copied, as is the case for remote objects.
Unexpected side effects can result if you ignore this distinction and do not code
accordingly.

Typically, you'll decide whether to use local or remote access based on:
Unless the client is always expected to run in another VM choose remote access.
Whether the beans are tightly or loosely coupled. If beans depend on each other and
interact frequently, you should consider local access.
Scalability. Remote access is inherently scalable and should be used if scalability is an
important factor.

With the advent of local interfaces in the EJB 2.0 specification, it is recommended that entity beans should
almost always be based on local access. When using local interfaces, most performance issues regarding
very fine-grained data access go away. If the client is remote, the standard design pattern has the client use
a remote interface to access a session bean, which then acts as a liaison to the entity bean. The session
bean communicates with the entity bean through a local interface (Session Façade Pattern).

© SAP AG 2004, Models Enterprise Java Beans / 18

Remote Home interface <name>Home HelloWorldHome

Local home interface <name>Local Home HelloWorldLocalHome

Remote (Component) interface <name> HelloWorld

Local (Component) interface <name>Local HelloWorldLocal

Enterprise bean class <name>Bean HelloWorldBean

Web Service <name>WS HelloWorldWS

SAP Web Dynpro <name>WD HelloWorldWD

Naming Conventions

Item Syntax Example

Performing Lookup from Application Client
The application client model enables you to access enterprise beans and other resources (for example, JMS
or database) from an application client. To use these resources (that is, to be able to invoke their methods),
you must first obtain a reference to them. The resource and enterprise bean references are bound in the
JNDI namespace and are obtained by performing a lookup operation in a relevant location in the naming.

Procedure
Line 6: Create InitialContext, which provides client access to the JNDI Registry Service through
the SAP J2EE Engine as a name service provider. For more information, refer to the SAP NetWeaver
Developer Manual.
Line 7: (Step2) The clients asks the naming service via JNDI for the reference to the home

object of the Session Bean.

© SAP AG 2004, Models Enterprise Java Beans / 19

HelloWorldClient

2

2

J2EE Server

EJB Container

Naming
ServiceNaming

A
P

I JNDI

Client

1

Bean Instance
(Stateless Session Bean)

“HelloWorldBean”

The (Remote) Client’s View, Create JNDI Lookup

1 Properties jndiCtxProp = new java.util.Properties();
2 jndiCtxProp.put(Context.INITIAL_CONTEXT_FACTORY, jndiInitCtxFactory);
4 . . .
5 try {
6 Context jndiCtx = new InitialContext(jndiCtxProp);
7 Object obj =
8 (Object)jndiCtx.lookup(“com.sap.training.HelloWorldBean”);

Remote Home Interface
“HelloWorldHome”

Call the Beans create-Method
Line 9: The client has to cast the object reference to the corresponding datatype of the

Remote Home Interface.
Line 10: (Step 3) The client now calls the create –Method of the Remote Home Object. As a

result, the containers creates a Remote Object and returns its reference to the client,
using the Remote Interface datatype.

© SAP AG 2004, Models Enterprise Java Beans / 20

J2EE Server

EJB Container

Naming
ServiceNaming

A
P

I JNDI

Client

3

The (Remote) Client’s View, Call Home Interface

HelloWorldClient

. . .
9 HelloWorldHome beanHome =

(HelloWorldHome)javax.rmi.PortableRemoteObject.narrow(
obj,HelloWorldHome.class);

10 HelloWorld myHelloWorld = beanHome.create();
. . .

3

4

Remote Component Interface
“HelloWorld”

Remote Home Interface
“HelloWorldHome”

Call the Business Method
Line 11: (Step 5) The client calls the business method sayHello.

(Step 6) The EJB-Object passes the parameters to the corresponding methods of the
stateless session bean, which returns the complete „Hello“-String to the client.

© SAP AG 2004, Models Enterprise Java Beans / 21

. . .
11 System.out.println(">> "+myHelloWorld.sayHello("Roland"));
. . .

J2EE Server

EJB Container

Naming
ServiceNaming

A
P

I JNDI

Client
5

6

The (Remote) Client’s View, Call Remote Interface

HelloWorldClient

5

Bean Instance
(Stateless Session Bean)

“HelloWorldBean”

Call the remove() Method
Line 12: (Step 7) The client calls the remove() method.

(Step 8) The EJB-Object is deleted by the EJBHomeObject. The client loses associated
reference.

© SAP AG 2004, Models Enterprise Java Beans / 22

. . .
12 beanHome.remove();
. . .

The (Remote) Client’s View, Remove EJB

HelloWorldClient

7

J2EE Server

EJB Container

Naming
ServiceNaming

A
P

I JNDI

Client

7

8

Remote Home Interface
“HelloWorldHome”

© SAP AG 2004, Models Enterprise Java Beans / 23

You should now be able to:

Understand what EJBs are.

Enterprise Java Beans: Topic Summary

Web Dynpro Model Type: XMI Model
Web Dynpro technology allows you to use external data imported from an (XMI) model from external
modeling tools; the source file must have the extension .xmi or .xml. The model tools also provide
comprehensive functions and a wizard for importing these files. The model tools also provide support
when displaying and changing imported model classes.

Note: This feature not shown in the course. If you want to learn more about it, please refer to
the documentation.

In the course material an alternative is shown: Binding an existing EJB application to Web Dynpro using
JNDI.

© SAP AG 2004, Models Enterprise Java Beans / 24

Application Scenario: Native Java Backend

Web Dynpro Model Type: XMI Model
Developer models backend interface layer (EJB or others) in UML
UML is exported in XMI format and imported into Web Dynpro tools
Web Dynpro tools generate model layer and bind the frontend to it

Development according to J2EE 1.3 standards
JSP, Servlets, etc. possible - but not recommended internally!
All types of Enterprise Java Beans (CMP or BMP) available

Java Persistence Layer
Open SQL, including performance features (Tracing, Caching, ...)
Note: separate schemas / repositories for ABAP and Java!

SAP
J2EE
Server

Web Dynpro
Runtime
for Java

Web Dynpro
Application

XMI
Model DB

Java Objects
(EJB etc.)

Open
SQL

Step 1: Prerequisits
If you want to use Enterprise Java Beans as model for Web Dynpro, you can use the tools of SAP
NetWeaver Developer Studio to define Enterprise Java Beans and platform independent database objects.
After development you have to put the objects in archives and deploy them to the Web Application Server.

© SAP AG 2004, Models Enterprise Java Beans / 25

Step 1: Deploy Dictionary Tables and EJBs

Open the Dictionary Perspective
Define tables and data types, create a Dictionary Archive and deploy it
to the Web Application Server

Open the J2EE Perspective
Develop EJBs, create .jar and .ear files and
deploy the .ear file to Web Application Server

MyDicProject

Development

.sda
Deployment

Archive (.ear)

EJB Container

Java Build Path
In the Properties wizard of the Web Dynpro project, choose Java Build Path and Libraries tab.
Make sure, that the classpath contains the necessary .jar-files.

Sharing References
In the Properties wizard, choose the Web Dynpro References and Sharing references tab. Add a new
Sharing reference with the following syntax<vendor name>/<name of the ear file without extension>In
our case this would be sap.com/WD02_Models_Sol_EJB_EAP
Note: This is the name under which the EJB application is stored on the Web Application server. You find
an entry in the Visual Administrator tool underServices/Deploy/EJBContainer.

© SAP AG 2004, Models Enterprise Java Beans / 26

Step 2: Customize Web Dynpro Project

Add the EJB .jar-file to the Web Dynpro project.

Define the Sharing Reference
of your Web Dynpro Project

Web Dynpro References
Tab: Sharing References

Java Build Path
Tab: Libraries

© SAP AG 2004, Models Enterprise Java Beans / 27

You should now be able to:

Customize a Web Dynpro project to use EJBs.

Use Enterprise Java Beans: Topic Summary

© SAP AG 2004, Models Enterprise Java Beans / 28

You should now be able to:

Explain Enterprise Java Beans.

Use EJBs as Web Dynpro Model.

Using EJBs as Web Dynpro Model: Summary

