
 Models
Exercise

Chapter: Models, Web Services
Theme: Using Web Dynpro to access a Web

 Service

At the end of this Exercise, you are able to:

• Access a Web service from Web Dynpro

1 Development Objectives

Accessing an e-mail Web service
In this exercise, you will develop a Web Dynpro application for sending an e-mail
message, using an e-mail Web service provided by an external service provider.
The user interface of this Web application will consist of a simple input form for
editing the addresses of senders and recipients, the subject, and the actual e-mail
message, and a button for sending the message. A message will be displayed in the
Web browser to tell the user whether or not the e-mail message was successfully sent.
The use of the e-mail Web service is enabled by an appropriate model (auxiliary and
communication classes) generated by the Web Dynpro tools. At runtime, the data
entered by the user of the application is passed to the model through the data binding
between the input fields and the context elements, and through the model binding of
these context elements. The model communicates with the Web service through a
client stub (a Java object that acts as a proxy for the Web service).
Note: SAP AG does not accept any responsibility regarding the availability and
quality of the external e-mail service used in this exercise.

2 Result

By the end of this exercise, you will be
able to:

- Create a model to be used for
connecting an external Web service
from within the Web Dynpro project.

- Design a simple view layout for
sending an e-mail message

- Perform the implementation for
availing of the e-mail Web service
used.

3 Prerequisites
You have launched the SAP NetWeaver Developer Studio.
You have selected the Web Dynpro perspective.
You have opened the project WD02_Models_Exc02.

For your convenience, you can start
developing with a predefined Web
Dynpro application.
The graphic on the left shows the
predefined project structure of this
exercise.

4 Overview: Developing

4-1 Create a Web service model.
To create a model that is based on a certain Web service, you first
require the URL address through which the corresponding WSDL
description can be accessed. If the address is known, you can then
easily create an appropriate Web Dynpro model easily.
4-1-1 Generate a Model from the WSDL Description, which can be

obtained via the following URL
http://webservices.matlus.com/scripts/emailwebservice.dll/
wsdl/IemailService

4-1-2 Make HTTP Proxy Settings. Ask your trainer for the settings
appropriate for your network environment.

4-2 Create the binding: Component Controller Context and Model

Each Web Dynpro component is supplied with an associated
Component Controller. This controller is responsible for retrieving the
data required by the Email Web service to send the e-mail.
Accordingly, it must be able to map the corresponding input and output
structures of the e-mail model. To do this, you need to bind the context
of the component controller to the created Web service model. You can
declare this model binding between the controller context and the
model with the Data Modeler, available as one of the Web Dynpro
tools.
4-2-1 Add the Model defined in Step 4-1 to the Web Dynpro

Component using the Data Modeler.

4-2-2 Bind the component controller context to the Web service.
Rename the Context Model node to WebServiceEmail.

4-3 Map the View Context Elements to the Component Context Elements.

In the last section, a structure for context model elements was created
in the context of the component controller. This structure is bound to
generated model classes. These model classes contain the data required
for sending the e-mail as well as the return data belonging to the
response of the Web service.
To be able to access this context structure even outside of a view
context, we apply the concept of Context Mapping.
4-3-1 Defining a Context Mapping in the Data Modeler.

4-4 Update the View Exc_WS_EMailView

4-4-1 Define the Data Binding between the value of the input field of
the View Exc_WS_EMailView and the corresponding context
model attributes.

4-4-2 Create the Action SendEmail.
To trigger sending the email message from the view
Exc_WS_EMailView using the Web service, you need an
associated Action.

4-4-3 Bind the action SendEmail to the onAction event of the UI
element SendButton.

4-5 Implement the source code for sending the Email via the Web Service
Connection.
4-5-1 Implement the Generic Event Handler wdDoInit() of the View

Controller.
- Create an instance of the appropriate model adapter class

(Type Request_IEmailService_sendMail).
- Bind this instance (req) to the context model node (Method

wdContext.nodeWebServiceEmail().bind(req)).
The model object req passes its data to the suitable Java proxy,
which then communicates with the actual Web service.

4-5-2 Implement the action event handler onActionSendEmail().
- First create a reference (msgMgr) to the components

message manager (Type IWDMessageManager). This is
necessary to report messages.

Because errors can occur, the following instruction must be
located inside a try - catch block.
- Next, the Request has to be send, using the method

wdContext.currentWebServiceEmailElement().
modelObject().execute().

- Invalidate the model node response.
- The response of the service call can be obtained by the

method wdContext.currentResponseElement().getResult();
- Convert the response to a String.
- If a response is received report the success (method

msgMgr.reportSuccess(…)), otherwise report a warning
(msgMgr.reportWarning(…)).

- If errors occurred during communication, report the
message (method msgMgr.reportException(…)).

The actual Web service is now called using the execute() method of
the model object currently stored in the context model node. This
already contains the reservation data entered by the user (through data
binding and context mapping). The data stored in the component
controller context is a copy of the data stored in the model, that is, the
one does not directly reference the other. Therefore, the view context
bound through context mapping also does not yet contain the returned
results of the Web service call executed previously and stored in the
model.
As an application developer, you therefore need to explicitly invalidate
the model node response. The response data most recently stored in
the model is then transmitted to the corresponding context node
element.
The returned result (in the example application this is just a single
integer value) is then displayed in an appropriate message text in the
message bar of the Web Dynpro application.

5 Overview: Building, Deploying, and Running
Deploy and run the Web Dynpro application.

