
 Models 
Exercise 

 

 

Chapter:  Models, Web Services 
Theme:  Using Web Dynpro to access a Web  

 Service 

 

At the end of this Exercise, you are able to: 

• Access a Web service from Web Dynpro 

 
 
4 Developing, Step-by-Step 
 
4-1 Create a Web service model. 
 
 4-1-1 Generate a Model from the WSDL Description 
  

 

 
In the project structure, expand the node 
Web Dynpro Models. 
 
From the context menu, choose Create 
Model.  
 



 
 The appropriate wizard appears. 

Choose the Import Web Service Model option and press Next. 
 
Enter: 
Name EmailModel 
Package com.sap.training.wd.exc21.model_ws 

 
Under Select WSDL Source, choose the radio button UDDI or URL, followed 
by Next. 

 
 
 Enter: 

Wsdl field http://webservices.matlus.com/scripts/ 
emailwebservice.dll/wsdl/IemailService 

 
You do not need to make any entries in the next popup (Proxy Definition / URI 
Package Mappings).  
 
Close the input dialog by choosing Finish. 
The corresponding Java proxies are then generated as client stubs, and the model 
classes are generated for the subsequent binding of context elements. 

 
 
 4-1-2 Make HTTP Proxy Settings 
 Open the Package Explorer. 

Open the following node:  
src / packages / com / sap / training / wd / exc21 / model_ws / proxies 
Choose the file lport1_1.lp. 
 
After having selected the checkbox Use HTTP Proxy, make the appropriate 
entries in the fields Proxy Host and Proxy Port: 
The field Proxy Host represents the host name or the IP address of the proxy 
server, and Proxy Port is the port to which the proxy server listens.  
Save your settings by choosing Save Editor Contents in the toolbar underneath 
the menu bar. 

 



 
4-2 Create the binding: Component Controller Context and Model. 
 
 4-2-1 Add the Model defined in Step 4-1 to the Web Dynpro Component using 

the Data Modeler. 
  

 

 
Open the Data Modeler. 
 
In the toolbar on the left, choose the 
icon Add a model to the component.  
The icon will turn gray. 
 
Place the cursor on the Used Models 
area and left-click. 
 
Select EmailModel and choose Ok. 
 
 

 
 
 4-2-2 Bind the component controller context to the Web service 
  

 
 

 
Open the Data Modeler. 
 
In the left toolbar, choose Create a data 
link. 
 
Starting above the Component Controller 
rectangle, press the left mouse button, and 
keep it pressed. 
 
Draw a line to the EmailModel rectangle 
and release the left mouse button. The 
Model Binding Wizard starts automatically. 
 
Drag the node EmailModel / 
Request_IEmailService_sendMail of the 
model class to the root node of the 
component controller context. 
 
In the dialog box that appears, select the 
model node 
Request_IEmailService_sendMail with all 
subcomponents. 
 

 



 Rename the new Model node from 
Request_IEmailService_sendMail to 
WebServiceEmail, by editing the 
appropriate entry in the column Name, and 
then choosing Ok. 
 
The resulting Model Binding between the 
model node WebServiceEmail and the 
corresponding model class is then displayed 
in a dialog box. 
 
Close the Model Binding Wizard by 
choosing Finish. 

 
 
4-3 Map the View Context Elements to the Component Context Elements 
 
 4-3-1 Define a Context Mapping in the Data Modeler 
  

 
 
 

 
Open the Data Modeler. 
 
In the left toolbar, choose Create a data 
link. 
 
Starting above the Component Controller 
rectangle, press the left mouse button, and 
keep it pressed. 
 
Draw a line to the Component Controller 
rectangle and release the left mouse button. 
 
Drag the model node WebServiceEmail of 
the context of the component controller to 
the root node of the view controller context, 
and drop it. 
 
In the dialog box that appears, select the 
model node WebServiceEmail with all 
subcomponents and choose Next. 
 
In the final dialog box, the context mapping 
declared between the two model nodes 
WebServiceEmail is displayed graphically: 
After having chosen Finish, the model node 
– together with its model attributes – is 
mapped to the component controller 
context. 



 
4-4 Update the View Exc_WS_EMailView 
 
 4-4-1 Define the Data Binding between the value of the input field of the View 

Exc_WS_EMailView and the corresponding context attributes. 
 Open the view Exc_WS_EmailView in the View Designer by clicking the Layout 

tab. 
In the Properties View, define the following bindings between input field values 
and context model attributes: 
Name of input field Context Model Attribute 
fromAddress WebServiceEmail.fromAddress 
toAddress WebServiceEmail.toAddress 
aSubject WebServiceEmail.aSubject 
aMessage WebServiceEmail.msgBody  

 
 
 4-4-2 Create the Action SendEmail. 
 Open the View Designer for the predefined view Exc_WS_EmailView. 

Choose the tab Actions. 
Choose the pushbutton New to start the dialog box for defining a new action. 
Enter the name SendEmail for the new action. 
Enter Send Email in the Text field and then choose Finish. 

 
 
 4-4-3 Bind the action SendEmail to the onAction event of the UI element 

SendButton. 
 In the View Designer of the view Exc_WS_EmailView, Properties View: 

Choose the UI element SendButton. 
Bind the event onAction of the Button UI element SendButton to the action you 
have created, SendEmail. 

 
 
4-5 Implement the source code for sending the Email via the Web Service 

Connection 
 
 4-5-1 Implement the Generic Event Handler wdDoInit() of the View Controller 
 In the View Designer, click on the Implementation tab for the view 

Exc_WS_EmailView. 
After the generation routines have been run once again, the updated source code 
of the view controller implementation is displayed. 
Now add the following Java code into the User Coding Area: 
 



 
 public void wdDoInit(){ 

  //@@begin wdDoInit() 
  // create a new instance of the Web Service ModelClass   
  Request_IEmailService_sendMail req =  
 new Request_IEmailService_sendMail();    
  // bind new instance of the Web Service ModelClass to the  
  // independent Model Node 
  wdContext.nodeWebServiceEmail().bind(req); 
  //@@end 
} 
 

 
 
 4-5-2 Implement the action event handler onActionSendEmail(). 
 In the onActionSendEmail() method, add the following source code: 

 
public void onActionSendMail(wdEvent) { 
  //@@begin onActionSendMail(ServerEvent) 
  IWDMessageManager msgMgr=  
    wdThis.wdGetAPI().getComponent().getMessageManager(); 
  try { 
    // call Email Web Service  
    wdContext.currentWebServiceEmailElement(). 
    modelObject().execute(); 
    wdContext.nodeResponse().invalidate();  
           
    int result =  
      wdContext.currentResponseElement().getResult();   
    String msg = "Email Web Service returned " +  
                 Integer.toString(result); 
    if (result == 0) {  
      msgMgr.reportSuccess( 
        "The email was successfully sent (" + msg + ")!"); 
    } else { 
      msgMgr.reportWarning( 
        "The email was not successfully sent (" + msg + ")!");    
    } 
  } catch(Exception ex) { 
    msgMgr.reportException(ex.getLocalizedMessage(),true);   
  } 
  //@@end 
} 

 
 
5 Building, Deploying, and Running, Step-by-Step 
 
 Deploy and run the Web Dynpro application. 
 In the Web Dynpro Explorer: 

Expand the nodes WD02_Models_Exc_WS / Web Dynpro / Applications. 
Open the context menu for WD02_Models_WebServices. 
To deploy and run the application, choose Deploy new Archive and Run 

 


