
Models
Exercise
	[image: image1.png]
	Chapter:
Models, Web Services
Theme:

Using Web Dynpro to access a Web

Service

	[image: image2.png]
	At the end of this Exercise, you are able to:

· Access a Web service from Web Dynpro

4
Developing, Step-by-Step

	4-1
	Create a Web service model.

	
	4-1-1
Generate a Model from the WSDL Description

	
	
[image: image3.png]

	In the project structure, expand the node Web Dynpro Models.
From the context menu, choose Create Model.

	
	The appropriate wizard appears.
Choose the Import Web Service Model option and press Next.
Enter:

Name

EmailModel
Package

com.sap.training.wd.exc21.model_ws
Under Select WSDL Source, choose the radio button UDDI or URL, followed by Next.

	
	Enter:

Wsdl field
http://webservices.matlus.com/scripts/
emailwebservice.dll/wsdl/IemailService
You do not need to make any entries in the next popup (Proxy Definition / URI Package Mappings).

Close the input dialog by choosing Finish.
The corresponding Java proxies are then generated as client stubs, and the model classes are generated for the subsequent binding of context elements.

	
	4-1-2
Make HTTP Proxy Settings

	
	Open the Package Explorer.
Open the following node:
src / packages / com / sap / training / wd / exc21 / model_ws / proxies
Choose the file lport1_1.lp.
After having selected the checkbox Use HTTP Proxy, make the appropriate entries in the fields Proxy Host and Proxy Port:
The field Proxy Host represents the host name or the IP address of the proxy server, and Proxy Port is the port to which the proxy server listens.
Save your settings by choosing Save Editor Contents in the toolbar underneath the menu bar.

	4-2
	Create the binding: Component Controller Context and Model.

	
	4-2-1
Add the Model defined in Step 4-1 to the Web Dynpro Component using the Data Modeler.

	
	[image: image4.png]

	Open the Data Modeler.

In the toolbar on the left, choose the icon Add a model to the component.
The icon will turn gray.
Place the cursor on the Used Models area and left-click.

Select EmailModel and choose Ok.

	
	4-2-2
Bind the component controller context to the Web service

	
	[image: image5.png]

	Open the Data Modeler.
In the left toolbar, choose Create a data link.

Starting above the Component Controller rectangle, press the left mouse button, and keep it pressed.

Draw a line to the EmailModel rectangle and release the left mouse button. The Model Binding Wizard starts automatically.

Drag the node EmailModel / Request_IEmailService_sendMail of the model class to the root node of the component controller context.
In the dialog box that appears, select the model node Request_IEmailService_sendMail with all subcomponents.

	
	[image: image6.png]
	Rename the new Model node from Request_IEmailService_sendMail to WebServiceEmail, by editing the appropriate entry in the column Name, and then choosing Ok.
The resulting Model Binding between the model node WebServiceEmail and the corresponding model class is then displayed in a dialog box.
Close the Model Binding Wizard by choosing Finish.

	4-3
	Map the View Context Elements to the Component Context Elements

	
	4-3-1
Define a Context Mapping in the Data Modeler

	
	[image: image7.png]

	Open the Data Modeler.
In the left toolbar, choose Create a data link.
Starting above the Component Controller rectangle, press the left mouse button, and keep it pressed.
Draw a line to the Component Controller rectangle and release the left mouse button.
Drag the model node WebServiceEmail of the context of the component controller to the root node of the view controller context, and drop it.
In the dialog box that appears, select the model node WebServiceEmail with all subcomponents and choose Next.
In the final dialog box, the context mapping declared between the two model nodes WebServiceEmail is displayed graphically:
After having chosen Finish, the model node – together with its model attributes – is mapped to the component controller context.

	4-4
	Update the View Exc_WS_EMailView

	
	4-4-1
Define the Data Binding between the value of the input field of the View Exc_WS_EMailView and the corresponding context attributes.

	
	Open the view Exc_WS_EmailView in the View Designer by clicking the Layout tab.

In the Properties View, define the following bindings between input field values and context model attributes:
Name of input field
Context Model Attribute
fromAddress

WebServiceEmail.fromAddress

toAddress

WebServiceEmail.toAddress

aSubject

WebServiceEmail.aSubject

aMessage

WebServiceEmail.msgBody

	
	4-4-2
Create the Action SendEmail.

	
	Open the View Designer for the predefined view Exc_WS_EmailView.
Choose the tab Actions.
Choose the pushbutton New to start the dialog box for defining a new action.
Enter the name SendEmail for the new action.
Enter Send Email in the Text field and then choose Finish.

	
	4-4-3
Bind the action SendEmail to the onAction event of the UI element SendButton.

	
	In the View Designer of the view Exc_WS_EmailView, Properties View:
Choose the UI element SendButton.
Bind the event onAction of the Button UI element SendButton to the action you have created, SendEmail.

	4-5
	Implement the source code for sending the Email via the Web Service Connection

	
	4-5-1
Implement the Generic Event Handler wdDoInit() of the View Controller

	
	In the View Designer, click on the Implementation tab for the view Exc_WS_EmailView.
After the generation routines have been run once again, the updated source code of the view controller implementation is displayed.
Now add the following Java code into the User Coding Area:

	
	public void wdDoInit(){
 //@@begin wdDoInit()
 // create a new instance of the Web Service ModelClass
 Request_IEmailService_sendMail req =

new Request_IEmailService_sendMail();
 // bind new instance of the Web Service ModelClass to the
 // independent Model Node
 wdContext.nodeWebServiceEmail().bind(req);
 //@@end
}

	
	4-5-2
Implement the action event handler onActionSendEmail().

	
	In the onActionSendEmail() method, add the following source code:

public void onActionSendMail(wdEvent) {
 //@@begin onActionSendMail(ServerEvent)
 IWDMessageManager msgMgr=
 wdThis.wdGetAPI().getComponent().getMessageManager();
 try {
 // call Email Web Service
 wdContext.currentWebServiceEmailElement().
 modelObject().execute();
 wdContext.nodeResponse().invalidate();
 int result =
 wdContext.currentResponseElement().getResult();
 String msg = "Email Web Service returned " +
 Integer.toString(result);
 if (result == 0) {
 msgMgr.reportSuccess(
 "The email was successfully sent (" + msg + ")!");
 } else {
 msgMgr.reportWarning(
 "The email was not successfully sent (" + msg + ")!");
 }
 } catch(Exception ex) {
 msgMgr.reportException(ex.getLocalizedMessage(),true);
 }
 //@@end
}

5
Building, Deploying, and Running, Step-by-Step

	
	Deploy and run the Web Dynpro application.

	
	In the Web Dynpro Explorer:
Expand the nodes WD02_Models_Exc_WS / Web Dynpro / Applications.

Open the context menu for WD02_Models_WebServices.
To deploy and run the application, choose Deploy new Archive and Run

