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Applies To: 

ABAP / ALV Grid

Article Summary

ABAP Code Sample that uses dynamic programming techniques to build a dynamic internal table for display in an ALV Grid with Cell Coloring.


By: Charles Folwell, Consultant
Date: 04 Feb 2005

Code Sample

REPORT  zcdf_dynamic_table.

* Dynamic ALV Grid with Cell Coloring.

*  Build a field catalog dynamically and provide the ability to color

*   the cells.

*  To test, copy this code to any program name and create screen 100

*   as described in the comments.  After the screen is displayed, hit

*   enter to exit the screen.

* Tested in 4.6C and 6.20

* Charles Folwell - cfolwell@csc.com - Feb 2, 2005

DATA:

  r_dyn_table      TYPE REF TO data,

  r_wa_dyn_table   TYPE REF TO data,

  r_dock_ctnr      TYPE REF TO cl_gui_docking_container,

  r_alv_grid       TYPE REF TO cl_gui_alv_grid,

  t_fieldcat1      TYPE lvc_t_fcat,           "with cell color

  t_fieldcat2      TYPE lvc_t_fcat,           "without cell color

  wa_fieldcat      LIKE LINE OF t_fieldcat1,

  wa_cellcolors    TYPE LINE OF lvc_t_scol,

  wa_is_layout     TYPE lvc_s_layo.

FIELD-SYMBOLS:

  <t_dyn_table>    TYPE STANDARD TABLE,

  <wa_dyn_table>   TYPE ANY,

  <t_cellcolors>   TYPE lvc_t_scol,

  <w_field>        TYPE ANY.

START-OF-SELECTION.

* Build field catalog based on your criteria.

  wa_fieldcat-fieldname = 'FIELD1'.

  wa_fieldcat-inttype   = 'C'.

  wa_fieldcat-outputlen = '10'.

  wa_fieldcat-coltext   = 'My Field 1'.

  wa_fieldcat-seltext   = wa_fieldcat-coltext.

  APPEND wa_fieldcat TO t_fieldcat1.

  wa_fieldcat-fieldname = 'FIELD2'.

  wa_fieldcat-inttype   = 'C'.

  wa_fieldcat-outputlen = '10'.

  wa_fieldcat-coltext   = 'My Field 2'.

  wa_fieldcat-seltext   = wa_fieldcat-coltext.

  APPEND wa_fieldcat TO t_fieldcat1.

* Before adding cell color table, save fieldcatalog to pass

*  to ALV call.  The ALV call needs a fieldcatalog without

*  the internal table for cell coloring.
  t_fieldcat2[] = t_fieldcat1[].

* Add cell color table.

*  CALENDAR_TYPE is a structure in the dictionary with a

*   field called COLTAB of type LVC_T_SCOL.  You can use

*   any structure and field that has the type LVC_T_SCOL.
  wa_fieldcat-fieldname = 'T_CELLCOLORS'.

  wa_fieldcat-ref_field = 'COLTAB'.

  wa_fieldcat-ref_table = 'CALENDAR_TYPE'.

  APPEND wa_fieldcat TO t_fieldcat1.

* Create dynamic table including the internal table

*  for cell coloring.
  CALL METHOD cl_alv_table_create=>create_dynamic_table

    EXPORTING

      it_fieldcatalog           = t_fieldcat1

    IMPORTING

      ep_table                  = r_dyn_table

    EXCEPTIONS

      generate_subpool_dir_full = 1

      OTHERS                    = 2.

  IF sy-subrc <> 0.

    MESSAGE ID sy-msgid TYPE sy-msgty NUMBER sy-msgno

               WITH sy-msgv1 sy-msgv2 sy-msgv3 sy-msgv4.

  ENDIF.

* Get access to new table using field symbol.

  ASSIGN r_dyn_table->* TO <t_dyn_table>.

* Create work area for new table.

  CREATE DATA r_wa_dyn_table LIKE LINE OF <t_dyn_table>.

* Get access to new work area using field symbol.

  ASSIGN r_wa_dyn_table->* TO <wa_dyn_table>.

* Get data into table from somewhere.  Field names are

*  known at this point because field catalog is already

*  built.  Read field names from the field catalog or use

*  COMPONENT <number> in a DO loop to access the fields.  A

*  simpler hard coded approach is used here.
  ASSIGN COMPONENT 'FIELD1' OF STRUCTURE <wa_dyn_table> TO <w_field>.

  <w_field> = 'ABC'.

  ASSIGN COMPONENT 'FIELD2' OF STRUCTURE <wa_dyn_table> TO <w_field>.

  <w_field> = 'XYZ'.

  APPEND <wa_dyn_table> TO <t_dyn_table>.

  ASSIGN COMPONENT 'FIELD1' OF STRUCTURE <wa_dyn_table> TO <w_field>.

  <w_field> = 'TUV'.

  ASSIGN COMPONENT 'FIELD2' OF STRUCTURE <wa_dyn_table> TO <w_field>.

  <w_field> = 'DEF'.

  APPEND <wa_dyn_table> TO <t_dyn_table>.

* Color cells based on your criteria.  In this example, a test on

*  FIELD2 is used to decide on color.
  LOOP AT <t_dyn_table> INTO <wa_dyn_table>.

    ASSIGN COMPONENT 'FIELD2' OF STRUCTURE <wa_dyn_table> TO <w_field>.

*   Get access to internal table used to color cells.

    ASSIGN COMPONENT 'T_CELLCOLORS'

      OF STRUCTURE <wa_dyn_table> TO <t_cellcolors>.

    CLEAR wa_cellcolors.

    wa_cellcolors-fname = 'FIELD2'.

    IF <w_field> = 'DEF'.

      wa_cellcolors-color-col = '7'.

    ELSE.

      wa_cellcolors-color-col = '5'.

    ENDIF.

    APPEND wa_cellcolors TO <t_cellcolors>.

    MODIFY <t_dyn_table> FROM <wa_dyn_table>.

  ENDLOOP.

* Display screen.  Define screen 100 as empty, with next screen

*  set to 0 and flow logic of:

*

*    PROCESS BEFORE OUTPUT.

*      MODULE initialization.

*

*    PROCESS AFTER INPUT.
  CALL SCREEN 100.

*---------------------------------------------------------------------*

*  MODULE initialization OUTPUT

*---------------------------------------------------------------------*
MODULE initialization OUTPUT.

* Set up for ALV display.

  IF r_dock_ctnr IS INITIAL.

    CREATE OBJECT r_dock_ctnr

           EXPORTING

              side  = cl_gui_docking_container=>dock_at_left

              ratio = '90'.

    CREATE OBJECT r_alv_grid

           EXPORTING i_parent = r_dock_ctnr.

*   Set ALV controls for cell coloring table.

    wa_is_layout-ctab_fname = 'T_CELLCOLORS'.

*   Display.

    CALL METHOD r_alv_grid->set_table_for_first_display

      EXPORTING

        is_layout       = wa_is_layout

      CHANGING

        it_outtab       = <t_dyn_table>

        it_fieldcatalog = t_fieldcat2.

  ELSE.     "grid already prepared

*   Refresh display.

    CALL METHOD r_alv_grid->refresh_table_display

      EXPORTING

        i_soft_refresh = ' '

      EXCEPTIONS

        finished       = 1

        OTHERS         = 2.

  ENDIF.

ENDMODULE.                 " initialization  OUTPUT
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