
Function Modules

Objective

The following section is intended to explain:

• What function modules are

• Components of function modules

• Testing and releasing of function modules

• Function modules are special external subroutines(program type F)

• Function modules are classified in function groups and stored in the
Function Library. Function groups act as containers for function
modules that logically belong together.

• Function modules allow us to encapsulate and reuse global functions
in the R/3 System.

• Function modules also play an important role in database updates and
in remote communications between R/3 Systems or between an R/3
System and a non-SAP system.

• The R/3 System provides numerous predefined function modules that
we can call from your ABAP/4 programs. We can also create your own
function modules using Function Builder. (Transaction Code SE 37)

Function Modules

Function Modules vs Subroutines

• Subroutines are principally for local modularization while Function
modules are for global modularization, that is, they are always called from
a different program.
• Subroutines are defined in ABAP programs while Function modules
are defined within function groups

• Function modules have clearly defined data interfaces to the calling
program.

• We can test function modules in a stand-alone mode independent of
the calling program.

Function Groups

• Function groups are containers for function modules.

• We cannot execute a function group. When we call a function module,
the system loads the whole of its function group into the internal
session of the calling program (if it has not already been loaded).

• Function group names are freely definable up to a maximum length of
26 alphanumeric characters.

• When we create a function group or function module in the Function
Builder , the main program and include programs are generated
automatically.

Creating Function Groups

New function groups can be created from the menu Goto - Function
Group - Create

Programming Function Modules

To program a function module, we must include our statements
between the FUNCTION and ENDFUNCTION statements as follows:
Syntax : FUNCTION <module>

<statements>
ENDFUNCTION

An existing Function Module can be inserted into ABAP Code using
Edit - Pattern

Import: Values transferred from the calling program to the function module.You
cannot overwrite the contents of import parameters at runtime.

Export:Values transferred from the function module back to the calling
program.

Changing :Values that act as import and export parameters simultaneously.
The original value of a changing parameter is transferred from the calling
program to the function module. The function module can alter the initial value
and send it back to the calling program.

Tables: Internal tables that can be imported and exported. The internal table's
contents are transferred from the calling program to the function module. The
function module can alter the contents of the internal table and then send it
back to the calling program. Tables are always passed by reference.

Exceptions:Error situations that can occur within the function module.
The calling program uses exceptions to find out if an error has occurred in the
function module. It can then react accordingly.

Components of Functional Modules

Import Parameters

Import parameters : These must be supplied with data when we call the
function module, unless they are flagged as optional. We cannot change
them in the function module.

Export parameters: These pass data from the function module back to the
calling program. Export parameters are always optional. We do not have
to receive them in our program.

Export Parameters

Changing parameters : Changing parameters are passed by reference or
by value and result. Changing parameters act simultaneously as import
and export parameters. They change the value passed to the function
module and return it to the calling program.

Changing Parameters

Tables Parameters

Tables parameters :We use these to pass internal tables. They are treated
like CHANGING parameters. However, we can also pass internal tables
with other parameters if you specify the parameter type appropriately.

Exceptions

• When creating function modules, we can define exceptions. The
calling program determines whether and which exceptions it is to
handle itself.

• We can assign the same error number to several exceptions.

• The OTHERS clause covers all exceptions not explicitly specified.

Source Code Tab

This tab shows the source of the function module in the ABAP/4 editor.
We can work with the source code in the same way as is done for normal
ABAP/4 programs opened via forward navigation.

• Check whether a suitable function module already exists.
If not, create one as follows.

• Create a function group, if no appropriate group exists yet.
• Create the function module.
• Define the function module interface by entering its parameters and

exceptions.
• Write the actual ABAP code for the function module, adding any

relevant global data to the TOP include.
• Activate the module.
• Test the module.
• Document the module and its parameters for other users.
• Release the module for general use.

Creating Function Modules

• The CALL FUNCTION statement can pass import, export, and changing
parameters either by value or by reference. Table parameters are
always transferred by reference.

• If you declare the parameters with reference to ABAP Dictionary fields
or structures, the system checks the type and length when the
parameters are transferred. If the parameters from the calling program
do not pass this check, the calling program terminates.

• At runtime, all function modules belonging to a function group are
loaded with the calling program. As a result, you should plan carefully
which functions really belong in a group and which do not. Otherwise,
calling your function modules will unnecessarily increase the amount
of memory required by the user.

Runtime Considerations

Function Builder

The Function Builder allows us to create, test, and administer function
modules in an integrated environment.

Function Builder

Function Module Attributes

Function Module Attributes - Processing Types

• Normal Function Module : Indicates that the function is a normal one

• Remote-enabled Module : Shows that the function is remote enabled

• Update Module

• Start Update Immediately :The function module is processed
immediately in the update task.

• Immediate Start, No restart : The function module will be edited in
the update task. It cannot be updated subsequently.

• Start Delayed :The function module is processed in the update task
as a low priority item. You use delayed update primarily for database
changes that are not time-critical (e.g. statistical updates).

• Collective Run :A number of similar function modules that
previously used to run individually in the V2 update process can be
grouped together and run collectively.

Finding Function Modules

• Using the Repository Information System
To search for a module, choose Find from the initial screen of the
Function Builder. The system displays the standard Function

Module search screen.

Finding Function Modules

• Using the Application Hierarchy
The Application Hierarchy provides an overview of all the applications
in your R/3 system. You can use this hierarchy to display function
modules associated with particular applications.

Calling Function Modules

CALL FUNCTION <module>
[EXPORTING f1 = a 1.... f n = a n]
[IMPORTING f1 = a 1.... f n = a n]
[CHANGING f1 = a 1.... f n = a n]
[TABLES f1 = a 1.... f n = a n]
[EXCEPTIONS e1 = r 1.... e n = r n [ERROR_MESSAGE = r E]
[OTHERS = ro]].

PROGRAM CALL_FUNCTION.

DATA: TEXT(10) TYPE C VALUE
'0123456789',
TEXT1(6) TYPE C,
TEXT2(6) TYPE C.

PARAMETERS POSITION TYPE I.

CALL FUNCTION
'STRING_SPLIT_AT_POSITION'

EXPORTING
STRING = TEXT
POS = POSITION

IMPORTING
STRING1 = TEXT1
STRING2 = TEXT2

EXCEPTIONS
STRING1_TOO_SMALL = 1
STRING2_TOO_SMALL = 2
POS_NOT_VALID = 3
OTHERS = 4.

CASE SY-SUBRC.
WHEN 0.
WRITE: / TEXT, / TEXT1, / TEXT2.
WHEN 1.
WRITE 'Target field 1 too short!'.
WHEN 2.
WRITE 'Target field 2 too short!'.
WHEN 3.
WRITE 'Invalid split position!'.
WHEN 4.
WRITE 'Other errors!'.
ENDCASE.

CALL FUNCTION - Example

Documenting function modules

The documentation for the function module is done in the Function
Builder. There are two kinds of documentation - parameter
documentation, and full function module documentation.

• The parameter documentation must provide users with information
about the different parameters and exceptions.

• Function module documentation contains important detailed
information about the task of the function module. A detailed
documentation will help us to understand the function module
without having to examine its source code.

Activating Function Module

Function Module can be activated from the menu as shown below.

Activating Function Group

Testing Function Modules - Initial Screen

• We can test function modules without having to include them in a
program using the Function Builder. When we test a function module, the
system displays any exceptions. The system also identifies the time
required to execute the module in microseconds.

Example Function : BAPI_CCODE_GET_FIRSTDAY_PERIOD
Import Parameters: Company Code, Fiscal Period, Fiscal Year

Testing Function Module - Result Screen

The function BAPI_CCODE_GET_FIRSTDAY_PERIOD when executed with
values given in the previous screen gives the following output. It also
shows the time required for executing the function module.

Releasing function modules

Releasing a function module is a purely administrative gesture with no
effect on the function or its usability. Releasing a function module signals
that a developer has tested it. When a function module is released its
documentation is released for translation and appears in the relevant
translator's worklist.

Function Modules

Summary

This section explained :

• The creation of function modules

• Components of function modules

• Releasing and activation of function modules

