
Internal Tables

Objective:

The following section explains :

• Defining Internal Tables

• Processing Internal Tables

• Accessing Internal Tables

• Initializing Internal Tables

Internal tables are structured data types provided by ABAP/4.
Internal tables cannot be accessed outside the program environment.

Purpose of internal tables

• Internal tables are used to reorganize the contents of database
tables according to the needs of your program

• Internal tables are used to perform calculations on subsets of
database tables.

• The number of lines in an internal table is not fixed.

• Internal tables exist only during the run time of a program.

Internal Tables

•You access internal tables line by line. You must use a work area as an
interface for transferring data to and from the table.

•When you read data from an internal table, the contents of the addressed
table line overwrite the contents of the work area..

• When you write data to an internal table, you must first enter the data in
the work area from which the system can transfer the data to the internal
table.

Accessing Internal Tables

There are two kinds of internal tables in ABAP/4:

· Internal tables with header line

If you create an internal table with header line, the system
automatically creates a work area with the same data type as
the lines of the internal table.

Note : Work area has the same name as the internal table.

· Internal tables without header line

Internal tables without a header line do not have a table work
area which can be used implicitly you must specify a work area
explicitly.

Types of internal tables

There are two ways by which you can create internal tables

First create an internal table data type using the 'TYPES' statement and
then create a data object referring that data type.

Syntax : TYPES <t> <type> OCCURS <n>

Eg: TYPES : BEGIN OF LINE,
COLUMN1 TYPE I,
COLUMN2 TYPE I,
COLUMN3 TYPE I,
END OF LINE.

TYPES ITAB TYPE LINE OCCURS 10.

Creating Internal Tables

Create an internal table data object by referring to a structure.

Syntax: DATA <f> <type> [WITH HEADER LINE]

Eg: TYPES : BEGIN OF LINE,
COLUMN1 TYPE I,
COLUMN2 TYPE I,
COLUMN3 TYPE I,
END OF LINE.

TYPES ITAB TYPE LINE OCCURS 10.
DATA ITAB1 TYPE ITAB.
DATA ITAB2 LIKE ITAB1 WITH HEADER LINE.

Creating Internal Tables with header line
In this method an internal table is created with reference to existing
structure (another internal table or Dictionary object).

Eg: DATA ITAB LIKE SFLIGHT OCCURS 10 WITH HEADER LINE.

Creating Internal Tables

Create an internal table data object directly with the 'DATA' statement.

Eg: DATA : BEGIN OF ITAB OCCURS 0,
COLUMN1 TYPE I,
COLUMN2 TYPE I,
COLUMN3 TYPE I,
END OF ITAB.

Note : In this method a header line with same name as the internal table
is created automatically.

Creating Internal Tables

Appending Lines:
To append a line to an internal table, use the APPEND statement as
follows:

Syntax
APPEND [<wa> TO] <itab>.

Eg: TYPES : BEGIN OF LINE,
COL1 TYPE C,
COL2 TYPE N,
END OF LINE.

DATA TAB1 LIKE LINE OCCURS 10.
LINE-COL1 = ‘A’. LINE-COL2 = ‘1’.
APPEND LINE TO TAB1.

Filling Internal Tables

Appending Lines depending on the Standard Key (COLLECT
STATEMENT)

To fill an internal table with lines which have unique standard keys.

Syntax
COLLECT [<wa> INTO] <itab>

If an entry with the same key already exists(all non-numeric fields) the
collect statement does not append a new line but adds the contents of the
numeric fields in the work area to the contents of the numeric fields in the
existing entry

Filling Internal Tables

Eg: TYPES : BEGIN OF ITAB1 OCCURS 0,
COL1 TYPE C,
COL2 TYPE I,
END OF ITAB1.

ITAB1-COL1 = ‘A’. ITAB1-COL2 = ‘1’.
COLLECT TAB1.
ITAB1-COL1 = ‘B’. ITAB1-COL2 = ‘2’.
COLLECT TAB1.
ITAB1-COL1 = ‘A’. ITAB1-COL2 = ‘1’.
COLLECT TAB1.

This Produces the output as follows:
A 2
B 2

Filling Internal Tables

Inserting lines :

To insert a new line before a line in an internal table, you use the INSERT
statement as follows:

Syntax

INSERT [<wa> INTO] <itab> [INDEX <idx>].

Eg: TYPES : BEGIN OF LINE,
COL1 TYPE C,
COL2 TYPE N,
END OF LINE.

DATA TAB1 LIKE LINE OCCURS 10.
LINE-COL1 = ‘A’. LINE-COL2 = ‘1’.
INSERT LINE INTO TAB1 INDEX 2.

Filling Internal Tables

COPYING INTERNAL TABLES :

To copy the entire contents of one internal table into another, use the
MOVE statement.

Syntax:

MOVE <itab1> to <itab2>

Eg: TYPES : BEGIN OF LINE,
COL1 TYPE C,
COL2 TYPE N,
END OF LINE.

DATA TAB1 LIKE LINE OCCURS 10.
DATA TAB2 LIKE LINE OCCURS 10.
LINE-COL1 = ‘A’. LINE-COL2 = ‘1’.
APPEND LINE TO TAB1.
MOVE TAB1[] TO TAB2.

Filling Internal Tables

Filling Internal Table from Database Table:

Example
TABLES SPFLI.

DATA ITAB LIKE SPFLI OCCURS 10 WITH HEADER LINE.

SELECT * FROM SPFLI INTO TABLE ITAB
WHERE CARRID = 'LH'.

LOOP AT ITAB.
WRITE: / ITAB-CONNID, ITAB-CARRID.

ENDLOOP.
In this example, all lines from the database table SPFLI in which CARRID
field contains "LH" are read into the internal table ITAB, where they can
be processed further.

Filling Internal Tables

To read data component by component into the internal table.

TABLES SPFLI.
DATA: BEGIN OF ITAB OCCURS 0,

NUMBER TYPE I VALUE 1,
CITYFROM LIKE SPFLI-CITYFROM,
CITYTO LIKE SPFLI-CITYTO,

END OF ITAB.

SELECT * FROM SPFLI WHERE CARRID = 'LH'.
MOVE-CORRESPONDING SPFLI TO ITAB.
APPEND ITAB.

ENDSELECT.

In this example, all lines from the database table SPFLI in which CARRID
field contains "LH" are read into the internal table ITAB one by one, where
they can be processed further.

Filling Internal Tables

To read the contents of internal tables for further processing, you can use
either the LOOP or the READ statement.

Reading Internal Tables Line by Line

You use the the LOOP statement to read internal tables line by line.

LOOP AT <itab> [INTO <wa>] [WHERE <condition>].
.....

ENDLOOP.

Eg: DO 3 TIMES.
LINE-COL1 = SY-INDEX. LINE-COL2 = SY-INDEX * SY-INDEX.
APPEND LINE TO TAB1.
ENDDO.
LOOP AT TAB1 WHERE COL1 > 2.
WRITE : / TAB1-COL1.
ENDLOOP.

Reading Internal Tables

You can select a single line by the READ statement:

Syntax:

READ TABLE <itab> [INTO <wa>] WITH KEY<key> [BINARY SEARCH].

Eg:
TYPES : BEGIN OF LINE,

COL1 TYPE C,
COL2 TYPE N,
END OF LINE.

DATA TAB1 LIKE LINE OCCURS 10.
DO 3 TIMES.
LINE-COL1 = SY-INDEX. LINE-COL2 = SY-INDEX ** 2.
APPEND LINE TO TAB1.
ENDDO.
READ TABLE TAB1 INTO LINE WITH KEY COL2 = 4.

Reading Internal Tables

Reading Internal Tables

The COMPARING addition, the specified table fields <f i > of the
structured line type are compared with the corresponding fields of the
work area before being transported. If the contents of the compared fields
are the same, SY-SUBRC is set to 0. If the contents of the compared fields
are not the same, it returns the value 2.
Syntax:
READ TABLE <itab> [INTO <wa>] INDEX <idx> COMPARING <fields>.
Eg:

TYPES : BEGIN OF LINE,
COL1 TYPE C,
COL2 TYPE N,
END OF LINE.

DATA TAB1 LIKE LINE OCCURS 10.
DO 3 TIMES.
LINE-COL1 = SY-INDEX. LINE-COL2 = SY-INDEX ** 2.
APPEND LINE TO TAB1.
ENDDO.
READ TABLE TAB1 INTO LINE INDEX 2 COMPARING COL1 COL2.

You can modify single line using MODIFY statement:

Syntax :
MODIFY itab [FROM wa] [INDEX idx].

Eg:
TYPES : BEGIN OF LINE,

COL1 TYPE C,
COL2 TYPE N,
END OF LINE.

DATA TAB1 LIKE LINE OCCURS 10.
DO 3 TIMES.
LINE-COL1 = SY-INDEX. LINE-COL2 = SY-INDEX ** 2.
APPEND LINE TO TAB1.
ENDDO.
LINE-COL1 = ‘A’.
MODIFY TAB1 FROM LINE INDEX 2.

Modifying Internal tables

Syntax :

MODIFY itab [FROM wa] [TRANSPORTING f1 ... fn [WHERE cond]].

Eg:
TYPES : BEGIN OF LINE,

COL1 TYPE C,
COL2 TYPE N,
END OF LINE.

DATA TAB1 LIKE LINE OCCURS 10.
DO 3 TIMES.
LINE-COL1 = SY-INDEX. LINE-COL2 = SY-INDEX ** 2.
APPEND LINE TO TAB1.
ENDDO.
LINE-COL1 = ‘A’.
MODIFY TAB1 FROM LINE TRANSPORTING COL1 WHERE COL2 = 4.

Modifying Internal tables

Deleting Internal tables

To delete lines from an internal table in a loop:

Syntax:

DELETE <itab>.

Note: The System can process this statement only within an
LOOP..ENDLOOP block.

Eg: DO 3 TIMES.
LINE-COL1 = SY-INDEX. LINE-COL2 = SY-INDEX * SY-INDEX.
APPEND LINE TO TAB1.
ENDDO.
LOOP AT TAB1.
IF TAB1-COL1 > 2.
DELETE TAB1.
ENDIF.

ENDLOOP.

TO delete the lines using Index.

Syntax:

DELETE <itab> INDEX <idx>.

Eg:
TYPES : BEGIN OF LINE,

COL1 TYPE C,
COL2 TYPE N,
END OF LINE.

DATA TAB1 LIKE LINE OCCURS 10.
DO 3 TIMES.
LINE-COL1 = SY-INDEX. LINE-COL2 = SY-INDEX * SY-INDEX.
APPEND LINE TO TAB1.
ENDDO.
DELETE TAB1 INDEX 2.

Deleting Internal tables

TO delete the Adjacent Duplicates from the Internal Table.

Syntax:

DELETE ADJACENT DUPLICATE ENTRIES FROM <itab> [COMPARING
<comp>]

Eg:
TYPES : BEGIN OF LINE,

COL1 TYPE C,
COL2 TYPE N,
END OF LINE.

DATA TAB1 LIKE LINE OCCURS 10.
LINE-COL1 = ‘A’. LINE-COL2 = ‘1’.
APPEND LINE TO TAB1.
LINE-COL1 = ‘A’. LINE-COL2 = ‘2’.
APPEND LINE TO TAB1.
DELETE ADJACENT DUPLICATE ENTRIES FROM TAB1

COMPARING COL1.

Deleting Internal tables

TO delete the Adjacent Duplicates from the Internal Table.

Syntax:

DELETE ADJACENT DUPLICATE ENTRIES FROM <itab> [COMPARING
<comp>]

Eg:
TYPES : BEGIN OF LINE,

COL1 TYPE C,
COL2 TYPE N,
END OF LINE.

DATA TAB1 LIKE LINE OCCURS 10.
LINE-COL1 = ‘A’. LINE-COL2 = ‘2’.
APPEND LINE TO TAB1.
LINE-COL1 = ‘A’. LINE-COL2 = ‘2’.
APPEND LINE TO TAB1.
DELETE ADJACENT DUPLICATE ENTRIES FROM TAB1

COMPARING ALL FIELDS.

Deleting Internal tables

TO delete a set of selected lines from the Internal Table.

Syntax:

DELETE <itab> [FROM <n1>] [TO <n2>] [WHERE <condition>].

Eg:
TYPES : BEGIN OF LINE,

COL1 TYPE C,
COL2 TYPE N,
END OF LINE.

DATA TAB1 LIKE LINE OCCURS 10.
LINE-COL1 = ‘A’. LINE-COL2 = ‘1’.
APPEND LINE TO TAB1.
LINE-COL1 = ‘A’. LINE-COL2 = ‘2’.
APPEND LINE TO TAB1.
DELETE TAB1 WHERE COL2 = 2.

Deleting Internal tables

Sorting Internal Table

TO Sort an Internal Table .

Syntax:

SORT <itab> [<order>] [AS TEXT] [BY <f1> [<order>] [AS TEXT] . . <fn>
[<order>] [AS TEXT]] .

Eg:

TYPES : BEGIN OF LINE,
COL1 TYPE C,
COL2 TYPE N,
END OF LINE.

DATA TAB1 LIKE LINE OCCURS 10.
LINE-COL1 = ‘A’. LINE-COL2 = ‘2’.
APPEND LINE TO TAB1.
LINE-COL1 = ‘A’. LINE-COL2 = ‘1’.
APPEND LINE TO TAB1.
SORT TAB1 BY COL2 ASCENDING .

Loop Processing

Calculating the totals within loop…endloop.

Syntax: SUM

Eg.
TYPES : BEGIN OF LINE,

COL1 TYPE C,
COL2 TYPE I,
END OF LINE.

DATA TAB1 LIKE LINE OCCURS 10.
DO 3 TIMES.
LINE-COL1 = SY-INDEX. LINE-COL2 = SY-INDEX ** 2.
APPEND LINE TO TAB1.
ENDDO.
LOOP AT TAB1.
SUM.
ENDLOOP.

Using Control Levels

This topic describes how to use control level statement blocks which
process only specific values within loop…endloop.

Syntax:

AT <line>
<statement block>

ENDAT.
The line condition <line>, at which the statement block within AT-ENDAT.
<Line> Meaning
FIRST First line of the internal table
LAST Last line of the internal table
NEW <f> Beginning of a group of line with same contents

in the fields <f> & in the fields of <f>.
END OF <f> End of a group of line with same contents in the

fields <f> & in the fields of <f>.

Note: Before working with control breaks, You should sort the internal
table in the same order as its columns are defined.

Using Control Levels

Hierarchy of AT-ENDAT statement.

If the internal table has the columns <col1>,<col2>,… and if it is sorted by
the columns as they are defined, the loop is to be programmed as follows:
LOOP AT <itab>.

AT FIRST. …..ENDAT.
AT NEW <col1>….ENDAT.

AT NEW <col2>……ENDAT.
…….
<single line processing>
……...
AT END OF <col2>…..ENDAT.

AT END OF <col1>……ENDAT.
AT LAST……ENDAT.

ENDLOOP.

Using Control Levels

Example:
TYPES : BEGIN OF LINE,

COL1 TYPE C,
COL2 TYPE I,
END OF LINE.
DATA TAB1 LIKE LINE OCCURS 10.

LINE-COL1 = ‘A’. LINE-COL2 = ‘2’.
APPEND LINE TO TAB1.
LINE-COL1 = ‘B’. LINE-COL2 = ‘1’.
APPEND LINE TO TAB1.
LINE-COL1 = ‘A’. LINE-COL2 = ‘3’.
APPEND LINE TO TAB1.
LINE-COL1 = ‘C’. LINE-COL2 = ‘4’.
APPEND LINE TO TAB1.
SORT TAB1 BY COL1.

Using Control Levels

Cont..
LOOP AT TAB1.

AT FIRST.
WRITE:/ ‘HEADING’.

ENDAT.
AT NEW COL1.

WRITE:/ TAB1-COL1.
ENDAT.
AT END OF COL1.

SUM.
WRITE:/ TAB1-COL1, TAB1-COL2.

ENDAT.
AT LAST.

SUM.
WRITE:/ TAB1-COL1, TAB1-COL2.

ENDAT.
ENDLOOP.

Initializing Internal Tables

To initialize an internal table with or without header line.

Syntax :
REFRESH <itab>.

This statement resets an internal table.

CLEAR <itab>.
If you are working with an internal table with a header line , the clear
statement clears only the table work area resetting to initial values.

CLEAR <itab>[].
The square bracket after the name of the internal table refer to the body of
the internal table.This statement also resets an internal table.

FREE <itab>.
You can release the memory with the FREE statement once initialized.

Example:

TYPES : BEGIN OF LINE,
COL1 TYPE C,
COL2 TYPE I,
END OF LINE.
DATA TAB1 LIKE LINE OCCURS 10.

LINE-COL1 = ‘A’. LINE-COL2 = ‘2’.
APPEND LINE TO TAB1.
LINE-COL1 = ‘B’. LINE-COL2 = ‘1’.
APPEND LINE TO TAB1.
CLEAR TAB1.
REFRESH TAB1.
IF TAB1 IS INITIAL.
WRITE:/ ‘TAB1 IS EMPTY’.
FREE TAB1.
ENDIF.

Initializing Internal Tables

