
Logical Databases

Objectives

In this Chapter we will discuss

– Overview of LDB

– Usage of LDB in ABAP Program

– Advantages of LDB

Database Selections

• Two ways of accessing data from database tables

– Accessing data using SELECT.

 You can read and analyze data from all database tables
 known to the SAP system by using SELECT statement with
 its different clauses.

– Accessing data using Logical Database(LDB).

 Logical databases provide a method for accessing data in
 database tables which differs from the SELECT statement.
 You can link a logical database to an ABAP/4 report program
 as an attribute , it then supplies the report program with a set
 of hierarchically structured table lines which can be taken
 from different database tables.

Comparison of Access Methods

• Report with SELECT statements Report with LDB

• Report …….. Report ……..
• Tables spfli, sflight, sbook. Tables spfli, sflight, sbook.
• SELECT * from spfli where ... Get spfli.
• <processing block> <processing block>
• SELECT * from sflight where … Get sflight.
• <processing block> <processing block>
• SELECT * from sbook where … Get sbook.
• <processing block> <processing block>
• ENDSELECT.
• ENDSELECT.
• ENDSELECT.

Advantages of LDB

• An easy-to-use standard user interface

• Meaningful data selection

• Central authorization checks for database accesses

• Check functions which check that user input is complete , correct
 and plausible

• Good read access performance while retaining the hierarchical data
 view determined by the application logic

• Create and design your own selection screen versions

Searching LDB

Go to transaction ‘SE36’ .Click F4 for list of LDBs’ . You will get the following screen .

Fill up the relevant fields and pick up the required LDB .

Tasks of Logical Databases

Logical databases allow you to program several different tasks centrally . You
use the Logical database to perform the following tasks :

– If several reports read the same data , you can code the read accesses in a single LDB.

– If you want to use the same user interface for several reports , you can implement this easily with
the selection screens of logical database .

– Authorization checks for central data are coded centrally in logical database .

– If you want to improve response times , logical databases permit you to take a number of
measures to achieve this .

Components of LDB

• Structure

• Selections

• Database program

Components of LDB

• Structure of LDB

 The structure of a logical database is usually based on the foreign
key relationships between hierarchical tables in the R/3 System.

Logical databases have a tree-like structure, which can be
defined as follows:

– There is a single node at the highest level. This is known as the
 root node.

– Each node can have one or several branches.

– Each node is derived from one other node.

Components of LDB

• Structure of LDB

Components of LDB

• Selections

 The selections in a logical database are defined using the
normal statements for defining selection screens, that is,

PARAMETERS

SELECT-OPTIONS

SELECTION-SCREEN

–Example

SELECT-OPTIONS SLIFNR FOR LFA1-LIFNR.
PARAMETERS PBUKRS LIKE LFB1-BUKRS FOR

TABLE LFB1.

Components of LDB

• Selections

– Dynamic Selections
 The tables defined in the structure can have dynamic selections using the following
 code in the Selections Include program

 SELECTION-SCREEN DYNAMIC SELECTION FOR TABLE <tbnam>

– Field Selections

 The tables for which field selection is defined can be called from the ABAP/4 program
 using GET <tbnam> Fields <f1> ….<fn> addition . The code for field selection in the
 Selections Include program is :

 SELECTION-SCREEN FIELD SELECTION FOR TABLE <tbnam>

Components of LDB

• Database Program

The name of the database program of a logical database <ldb>
conforms to the naming convention SAPDB<ldb>.

It serves as a container for subroutines, which the ABAP runtime
environment calls when a logical database is processed.

Components of LDB

• Database Program

− Subroutines in LDB

FORM LDB_PROCESS_INIT

Called once only before the logical database is processed.
It prepares it to be called more than once by the function module
LDB_PROCESS.

FORM INIT

Called once only before the selection screen is processed.

FORM PBO

Called before the selection screen is displayed,
each time it is displayed. Consequently, it is only called when you
use the logical database with an executable program,
not with the function module LDB_PROCESS

• Database Program

− Subroutines in LDB

FORM PAI

Called when the user interacts with the selection screen.
Consequently, it is only called when you use the logical database
with an executable program, not with the function module
LDB_PROCESS.

FORM LDB_PROCESS_CHECK_SELECTIONS

Called instead of the subroutine PAI if the logical database is called
using the function module LDB_PROCESS without a
selection screen.
This subroutine can check the selections passed in the
function module interface.

Components of LDB

• Database Program

− Subroutines in LDB

FORM PUT_<node>

Called in the sequence defined in the structure.
Reads the data from the node <node> and uses the

PUT <node>.

Statement to trigger a corresponding GET event in the ABAP
runtime environment.

Components of LDB

Example of LDB

• Structure

• Selections in the Selection Include

SELECT-OPTIONS: SLIFNR FOR LFA1-LIFNR,
SBUKRS FOR LFB1-BUKRS,
SGJAHR FOR LFC1-GJAHR,
SBELNR FOR BKPF-BELNR.

* DATABASE PROGRAM OF THE LOGICAL
* DATABASE TEST_LDB *

PROGRAM SAPDBTEST_LDB DEFINING
DATABASE TEST_LDB.

TABLES: LFA1,
LFB1,
LFC1,
BKPF.

* Initialize selection screen (process before PBO)

FORM INIT.

....
ENDFORM. "INIT

* PBO of selection screen (always before selection
* screen

FORM PBO.

....
ENDFORM. "PBO

Example of LDB

* PAI of selection screen (process always after ENTER)

FORM PAI USING FNAME MARK.
CASE FNAME.

WHEN 'SLIFNR'.
....

WHEN 'SBUKRS'.
....

WHEN 'SGJAHR'.
....

WHEN 'SBELNR'.
....

ENDCASE.
ENDFORM. "PAI

* Call event GET LFA1

Example of LDB

FORM PUT_LFA1.
SELECT * FROM LFA1

WHERE LIFNR IN SLIFNR.
PUT LFA1.

ENDSELECT.
ENDFORM. "PUT_LFA1

* Call event GET LFB1

FORM PUT_LFB1.

SELECT * FROM LFB1
WHERE LIFNR = LFA1-LIFNR

AND BUKRS IN SBULRS.
CASE FNAME.

WHEN 'SLIFNR'.
....

WHEN 'SBUKRS'.
....

WHEN 'SGJAHR'.
....

WHEN 'SBELNR'.
....

ENDCASE.
ENDFORM. "PAI

Example of LDB

* Call event GET LFA1

PUT LFB1.
ENDSELECT.

ENDFORM. "PUT_LFB1

* Call event GET LFC1

FORM PUT_LFC1.
SELECT * FROM LFC1

WHERE LIFNR = LFA1-LIFNR
AND BUKRS = LFB1-BUKRS
AND GJAHR IN SGJAHR.

PUT LFC1.
ENDSELECT.

Example of LDB

ENDFORM. "PUT_LFC1

* Call event GET BKPF

FORM PUT_BKPF.
SELECT * FROM BKPF

WHERE BUKRS = LFB1-BUKRS
AND BELNR IN SBELNR
AND GJAHR IN SGJAHR.

PUT BKPF.
ENDSELECT.

ENDFORM. "PUT_BKPF

Example of LDB

• Relation between PUT and GET statements

Example of LDB

• Relation between PUT and GET statements

REPORT DEMO.
NODES: SPFLI,SFLIGHT.
GET SFLIGHT.
WRITE: / SPFLI-CARRID, SPFLI-CONNID.

Example of LDB

Checking Logical Databases

• To check whether a logical database is correct and complete , choose

 Check on the initial screen.Then see a screen which displays these checks:

Summary

•Two methods for database selections

•Comparison between the two methods

•Components of LDB

•Task of LDB

•Advantages of LDB

•Linking LDB in ABAP Report

•Searching LDB

•Example of LDB

•Checking LDB

Exercises in LDB

• Exercise 1
– Write a report for getting the Purchasing document number using

 LDB ‘EMM’

REPORT Z_LOG_DATA_EXP1 .

TABLES: EKKO.

*Get the data from the LDB
GET EKKO.

IF SY-SUBRC EQ 0.
*Write purchasing document number
WRITE: / EKKO-EBELN.

ENDIF.

Exercises in LDB

• Exercise 2
– Write a report for getting the Purchasing document number using

 LDB ‘EMM’ using the GET statement with FIELDS addition

REPORT Z_LOG_DATA_EXP1 .

TABLES: EKKO.

*Get only the purchasing document number from the LDB
GET EKKO FIELDS EBELN.

IF SY-SUBRC EQ 0.

*Write the purchasing document number
WRITE: / EKKO-EBELN.

ENDIF.

Exercises in LDB

• Exercise 3
– Write a report for getting the Purchasing document number using

 LDB ‘EMM’ using the GET LATE statement

REPORT Z_LOG_DATA_EXP3 .

TABLES: EKKO, EKPO, EKET.

* This GET statement will be executed after all GET statements
GET EKKO LATE FIELDS EBELN .

IF SY-SUBRC EQ 0.

*Write the purchasing document number
WRITE: / ’Purchasing Document number ', EKKO-EBELN.

ENDIF.

Exercises in LDB

• Exercise 3
– Write a report for getting the Purchasing document number using

 LDB ‘EMM’ using the GET statement with FIELDS addition

GET EKPO.

IF SY-SUBRC EQ 0.
* Write the material number
WRITE: / ’Material Number', EKPO-MATNR.

ENDIF.

GET EKET.

IF SY-SUBRC EQ 0.

* Write the quantity
WRITE: / ’Quantity', EKET-WEMNG.

ENDIF

Exercises in LDB

• Exercise 4
– Write a report for hiding the fields on the selection screen generated by

 the LDB ‘EMM’

REPORT Z_LOG_DATA_EXP4 .

TABLES: EKKO, EKPO.

AT SELECTION-SCREEN OUTPUT.

* Loop at screen internal table
LOOP AT SCREEN .

IF SCREEN-NAME = '%_EM_WERKS_%_APP_%-TEXT'.
SCREEN-INVISIBLE = '1' .
MODIFY SCREEN.
ENDIF.

Exercises in LDB

• Exercise 4
– Write a report for hiding the fields on the selection screen generated by

 the LDB ‘EMM’

IF SCREEN-NAME = 'EM_WERKS-LOW'.
SCREEN-INVISIBLE = '1' .
SCREEN-INPUT = '0'.
MODIFY SCREEN.

ENDIF.

IF SCREEN-NAME = 'EM_WERKS-HIGH'.
SCREEN-INVISIBLE = '1' .
SCREEN-INPUT = '0'.
MODIFY SCREEN.
ENDIF.

Exercises in LDB

• Exercise 4
– Write a report for hiding the fields on the selection screen generated by

 the LDB ‘EMM’

IF SCREEN-NAME = '%_EM_WERKS_%_APP_%-VALU_PUSH'.
SCREEN-INVISIBLE = '1' .
MODIFY SCREEN.

ENDIF.

ENDLOOP.

START-OF-SELECTION.

GET EKKO LATE .

IF SY-SUBRC EQ 0.

Exercises in LDB

• Exercise 4
– Write a report for hiding the fields on the selection screen generated by

 the LDB ‘EMM’

WRITE: / ’Purchasing Document Number ', EKKO-EBELN.

ENDIF.

GET EKPO FIELDS MATNR.

IF SY-SUBRC EQ 0.

WRITE: / ’Material Number ', EKPO-MATNR.

ENDIF.

