
Created by Pavan

Mail : Praveen.srrec@gmail.com

1

BAPI:
A Business Application Programming Interface is a precisely

defined interface providing access process and data in Business

Applications Systems Such as SAP R/3

Benefits of BAPI:

• Can be used in diverse languages / Development Environments

 (ABAP, Visual Basic, Java, C++, etc.)

• Can be called from diverse platforms (COM, CORBA, Unix)

• Reduced development cost

• Reduced maintenance cost

• “Best-of-both-worlds” approach

• Rich functionality of the R/3 system

• User-specific front-ends

Programming a BAPI consists of 6 major tasks:

1. Defining BAPI Data structures in SE11

2. Program a RFC enabled BAPI function module for each method

3. Create a Business object for the BAPI in the BOR

4. Documentation of the BAPI
5. Generate ALE interface for asynchronous BAPIs

6. Generate and release

Created by Pavan

Mail : Praveen.srrec@gmail.com

2

BAPI CONVENTIONS:

Methods

• If the BAPI to be implemented is a standardized BAPI, use the generic

names, for example, GetList, GetDetail.

• The method name must be in English (maximum 30 characters).

• The individual components of a BAPI name are separated by the use of

upper and lower case. Example: GetList

Underscores ("_") are not allowed in BAPI names.

• Each BAPI has a return parameter that is either an export parameter or an

export table.

• So that customers can enhance BAPIs, each BAPI must have an ExtensionIn

and an ExtensionOut parameter.

Parameters

• If standardized parameters are used, you have to use the names specified for

standardized parameters.

• BAPI parameter names should be as meaningful as possible. Poorly chosen

names include abbreviations and technical names (e.g. "flag", table names,

etc.).

The parameter and field names must be in English with a maximum of 30

characters.

• The components of a parameter name in the BOR are separated by upper

and lower case letters to make them easier to read. Example:

CompanyCodeDetail

• Values that belong to each other semantically should be grouped together in

one structured parameter, instead of using several scalar parameters.

• For ISO-relevant fields (country, language, unit of measure, currency),

additional fields for ISO codes are provided.

• Unit of measure fields must accompany all quantity fields and currency

identifiers must accompany currency amount fields.

Created by Pavan

Mail : Praveen.srrec@gmail.com

3

Standardized BAPIs

Some BAPIs provide basic functions and can be used for most SAP business object

types. These BAPIs should be implemented the same for all business object types.

Standardized BAPIs are easier to use and prevent users having to deal with a

number of different BAPIs. Whenever possible, a standardized BAPI must be used

in preference to an individual BAPI.

The following standardized BAPIs are provided:

Reading instances of SAP business objects

GetList () With the BAPI GetList you can select a range of object key values, for

example, company codes and material numbers.

The BAPI GetList() is a class method.

GetDetail() With the BAPI GetDetail() the details of an instance of a business object

type are retrieved and returned to the calling program. The instance is

identified via its key. The BAPI GetDetail() is an instance method.

BAPIs that can create, change or delete instances of a business object type

The following BAPIs of the same object type have to be programmed so that they can be

called several times within one transaction. For example, if, after sales order 1 has been

created, a second sales order 2 is created in the same transaction, the second BAPI call

must not affect the consistency of the sales order 2. After completing the transaction with

a COMMIT WORK, both the orders are saved consistently in the database.

Create() and

CreateFromData()

The BAPIs Create() and CreateFromData() create an

instance of an SAP business object type, for example, a

purchase order. These BAPIs are class methods.

Change() The BAPI Change() changes an existing instance of an SAP

business object type, for example, a purchase order. The

BAPI Change () is an instance method.

Delete() and Undelete() The BAPI Delete() deletes an instance of an SAP business

object type from the database or sets a deletion flag.

The BAPI Undelete() removes a deletion flag. These BAPIs

are instance methods.

Created by Pavan

Mail : Praveen.srrec@gmail.com

4

Cancel () Unlike the BAPI Delete(), the BAPI Cancel() cancels an

instance of a business object type. The instance to be

cancelled remains in the database and an additional instance

is created and this is the one that is actually canceled. The

Cancel() BAPI is an instance method.

Add<subobject> () and

Remove<subobject> ()

The BAPI Add<subobject> adds a subobject to an existing

object instance and the BAPI and Remove<subobject>

removes a subobject from an object instance. These BAPIs

are instance methods.

BAPIs for Mass Data Processing

The BAPIs listed above for creating and changing data can also be used for mass

processing. For more information see BAPIs for Mass Data Transfer [Extern]

BAPIs for Replicating Business Object Instances

Replicate() and

SaveReplica()

The BAPIs Replicate() and SaveReplica() are implemented as

methods of replicable business object types. They enable specific

instances of an object type to be copied to one or more different

systems. These BAPIs are used mainly to transfer data between

distributed systems within the context of Application Link Enabling

(ALE). These BAPIs are class methods.

Other Less Used Standardized BAPIs

• Programming GetStatus() BAPIs [Extern]

• Programming ExistenceCheck() BAPIs [Extern]

Created by Pavan

Mail : Praveen.srrec@gmail.com

5

Standardized Parameters

There are some parameters that can be created for various BAPIs because they contain

the same or the equivalent data in all BAPIs. They should be implemented the same in all

BAPIs.

Address

parameters

Specific reference structures are defined for address parameters in

BAPIs. You should copy these structures to use in your BAPI,

especially if the underlying object type uses the central address

management (CAM).

Change

Parameters

In BAPIs that cause database changes (for example, Change() and

Create() BAPIs) you must be able to distinguish between parameter

fields that contain modified values and parameter fields that have not

been modified. This distinction is made through the use of standardized

parameters.

Extension

parameters

The parameters ExtensionIn and ExtensionOut provides customers

with a mechanism that enables BAPIs to be enhanced without

modifications.

Return

Parameters

Each BAPI must have an export return parameter for returning

messages to the calling application. To provide application

programmers with a consistent error handling process for BAPI calls,

all return parameters must be implemented in the same, standardized

way.

Selection

Parameters

Standardized selection parameters are used in BAPIs that can be used to

search for specific instances of a business object type (e.g. in GetList()

). These parameters enable the BAPI caller to specify the relevant

selection criteria.

Test Run

Parameters

The parameter TestRun is used in write BAPIs (Create() and Change()

), to check the entries for the object instance in the database before

actually creating the object instance. The creation of the object instance

is only simulated and data is not updated.

Text Transfer

Parameters

To transfer BAPI documentation texts (e.g. the documentation of a

business object type), you have to create standardized text transfer

parameters.

Created by Pavan

Mail : Praveen.srrec@gmail.com

6

Important things to remember..

It is important to follow the guidelines below when develop9ng BAPIs:

• BAPIs must not contain CALL TRANSACTION or SUBMIT REPORT

• BAPIs must not invoke a COMMIT WORK. instead use the BAPI

Transaction Commit to execute the commit after the BAPI has executed.

• BAPI structures must not use includes.

• There should be no functional dependencies between two BAPIs

• BAPIs must perform there own authorization check

• BAPIs should not use dialogs

• BAPIs must not cause the program to abort or terminate. Relevant messages

must be communicated through the return parameter.

Created by Pavan

Mail : Praveen.srrec@gmail.com

7

Copied from http://help.sap.com/

BOR

Definition

The Business Object Repository (BOR) is the object-oriented repository in the R/3

System. It contains the SAP business object types and SAP interface types as well as their

components, such as methods, attributes and events.

BAPIs are defined as methods of SAP business object types (or SAP interface types) in

the BOR. Thus defined, the BAPIs become standard with full stability guarantees as

regards their content and interface.

Use

The BOR has the following functions for SAP business object types and their BAPIs:

• Provides an object oriented view of R/3 System data and processes.

R/3 application functions are accessed using methods (BAPIs) of SAP Business

Objects. Implementation information is encapsulated; only the interface

functionality of the method is visible to the user.

• Arranges the various interfaces in accordance with the component hierarchy,

enabling functions to be searched and retrieved quickly and simply.

This finds the functionality searched for quickly and simply.

• Manages BAPIs in release updates.

BAPI interface enhancements made by adding parameters are recorded in the

BOR. Previous interface versions can thus be reconstructed at any time. When a

BAPI is created the release version of the new BAPI is recorded in the BOR. The

same applies when any interface parameter is created.

Created by Pavan

Mail : Praveen.srrec@gmail.com

8

The version control of the function module that a BAPI is based on is managed in

the Function Builder.

• Ensures interface stability.

Any interface changes that are carried out in the BOR, are automatically checked

for syntax compatibility against the associated development objects in the ABAP

Dictionary.

Integration

A BAPI is implemented as a function module, that is stored and described in the Function

Builder. You should only define a BAPI as a method of an SAP business object type in

the BOR, if the function module that the BAPI is based on has been fully implemented.

Access to the BOR is restricted at SAP.

Created by Pavan

Mail : Praveen.srrec@gmail.com

9

Defining Methods in the BOR Using the BOR/BAPI Wizard

Prerequisites

If the function module which your BAPI is based on has been fully

implemented or modified you can define it as a method of an SAP business

object type or SAP interface type in the Business Object Repository (BOR).

You use the BOR/BAPI Wizard to do this.

Procedure

First find the relevant SAP business object type in the BOR:

1. Choose Tools� Business Framework �BAPI Development

�Business Object Builder.

On the initial Business Object Builder screen you can directly access

the SAP business object type or interface type if you know the

technical name of the object (object type). You have already identified

the technical name of the object.

Otherwise choose Business Object Repository.

• To display object types, in the next dialog box indicate whether you

want to display all object types or only business object types. Then

choose Continue.

• To display SAP interface types, in the next dialog box choose Other

settings and then select Interface.

The application hierarchy is displayed. Search for the required

business object type or interface type in the application hierarchy and

double click it to open it.

2. When the business object type or interface type is displayed, choose

Change.

Created by Pavan

Mail : Praveen.srrec@gmail.com

10

Creating BAPIs as Methods of Business Object Types or Interface

Types

To define your BAPI as a method of a business object type or interface type:

1. Select Utilities� API Methods� Add method.

2. In the next dialog box enter the name of the function module, for

example, BAPI_COMPANYCODE_GETDETAIL, and choose

Continue.

3. In the next dialog box specify the following information for the

method to be defined:

• Method

A default name for the method is provided, based on the name

of the function module. You may have to modify the suggested

name:

Example: If the name of the function module is

SALESORDER_GETSTATUS, the suggested method name

might be BapiSalesorderGetstatus. You should edit this so that

the resulting name is GetStatus.

• Texts

Enter meaningful descriptions for your BAPI.

• Radio buttons Dialog, Synchronous

Enter relevant details for your BAPI. Make sure that a BAPI is

not dialog orientated. BAPIs are usually implemented

synchronously.

4. Choose Next Step.

A list of parameters and default names is displayed which you need to

edit as required. Modify the parameter names as follows:

Created by Pavan

Mail : Praveen.srrec@gmail.com

11

• Each new word in the parameter name must start with a capital letter,

for example, CompanyCodeDetail.

• Make sure that the parameter names of the method in the BOR are

identical to the parameter names in the function module except for the

upper/lower case letters.

• The import and export behavior of the table parameters must be

correctly defined in the BOR.

Reason : In contrast to the function module, in the BOR you can

differentiate between import and export for tables also. You should

therefore only select the standard option Import/export, if the table is

actually going to be imported and exported.

• The return parameter is always defined as an export parameter.

5. Choose Next Step.

To create the method choose Yes in the next dialog box.

Result

After the program has been generated and executed, check that all the

definitions have been made correctly by the BOR/BAPI Wizard. To do this,

look at the newly created method of the business object type or interface

type.

The BOR/BAPI Wizard is used only to create new BAPIs for

the first time. It is not used to make changes to existing BAPIs.

If you make changes to the underlying function module after

you have created the BAPI in the BOR, for example, if you

make compatible interface enhancements or modify short texts,

such changes do not automatically take effect in the BOR. You

have to make these changes manually in the BOR. For

information about creating and modifying business object types

Created by Pavan

Mail : Praveen.srrec@gmail.com

12

Copied from http://help.sap.com/

This BAPI reads system status for a production order from table JEST and system

status text from table TJ02T

Name ZGetOrderStatus

Function group ZBAPISTATUS

Function

module:
Z_BAPI_GET_ORDER_STATUS

Import

parameters:

ORDER_STATUS_IMPORT type

ZBAPI_ORDER_STATUS_IMPORT:

• AUFNR Order number (Keyfield)
• SPRAS Language
• ExcludeInactive - Checkbox - Exclude inactive status

Tables T_BAPISTAT type ZBAPISTAT:

• OBJNR like JEST-OBJNR
• STAT like JEST-STAT

• INACT like JEST-INACT

• TXT04 like TJ02T-TXT04

• TXT30 likeTJ02T-TXT30

Export

parameters
RETURN like BAPIRETURN

One thing you have to remember while creating a BAPI is don’t assign it to any
temporary package because at last we have to release the BAPI

Import and Export parameters of an BAPI should be defined under a structure only

it should not refer to an Table

Created by Pavan

Mail : Praveen.srrec@gmail.com

13

Define a structures for the BAPI

 Create new structure for our BAPI

Goto Tcode SE11 select the radio button Data Type

Data Type ���� ZBAPI_ORDER_STATUS_IMPORT

Define the following fields in the structure

• ORDERID Order number (Keyfield)

• I_SPRAS Language

• I_EXCLUDEINACTIVE - Checkbox - Exclude inactive status

Created by Pavan

Mail : Praveen.srrec@gmail.com

14

Save it & activate it………

Created by Pavan

Mail : Praveen.srrec@gmail.com

15

Now create another structure ZBAPISTAT

Declare these following fields

• OBJNR

• STAT

• INACT

• TXT04

• TXT30

Created by Pavan

Mail : Praveen.srrec@gmail.com

16

Now the structures has been created for our BAPI next goto Tcode SE37.

For every BAPI or Function module there will be a separate function group which
we cant use for another BAPI or Function module so create your own function
group for each BAPI you create

Created by Pavan

Mail : Praveen.srrec@gmail.com

17

Create Function Group:

Created by Pavan

Mail : Praveen.srrec@gmail.com

18

Created by Pavan

Mail : Praveen.srrec@gmail.com

19

Created by Pavan

Mail : Praveen.srrec@gmail.com

20

Create new BAPI:

In the attributes fill all necessary parameters as shown below

Created by Pavan

Mail : Praveen.srrec@gmail.com

21

• Under the attributes tab remember to select Processing Type Remote

Enabled module, otherwise the function module cannot be invoked via

RFC and used as a BAPI

• Import/Export parameters can only be BY VALUE for an RFC enabled

function module

• We are only creating one BAPI in this example, but you can create

related BAPIs in the same function pool, so they will be able to share

global data.

Created by Pavan

Mail : Praveen.srrec@gmail.com

22

IMPORT PARAMETERS:

Parameter Name : BAPI_ORDER_STATUS_IMPORT

Type : TYPE
Associated Type : ZBAPI_ORDER_STATUS_IMPORT

And check the Pass value

Created by Pavan

Mail : Praveen.srrec@gmail.com

23

Export Parameters:
As I have said earlier in the output parameters there will be only some constant

parameters should be passed

BAPIRETURN

BAPIRETURN1

BAPIRET1

BAPIRET2

BAPI Return Structure Type:

• Type Message type

���� Blank or “S"=Success

���� "E"=Error

���� "W"=Warning

���� "I"=Information

���� "A"=Abort

• Message Message text

• Log_No Application Log Number

• Log_Msg_No Application Log Message Serial Number

• Message_V1 -V4 Message variables

Created by Pavan

Mail : Praveen.srrec@gmail.com

24

Created by Pavan

Mail : Praveen.srrec@gmail.com

25

There is no need to declare any values in the tab changing

Created by Pavan

Mail : Praveen.srrec@gmail.com

26

Tables:
Parameter Name : T_BAPISTAT

Type Specification : LIKE
Associated Type : ZBAPISTAT

Code

Notes:

• The subroutine SET_RETURN_MESSAGE is a standard routine used for

BAPIs that use the BAPIRETURN structure

• In form Z_BAPI_GET_ORDER_SYSTEM_STATUS there is a test IF 1 = 2.

If the test is true a message is displayed. The condition will obviously never

be true, and we will never want to display a message in a BAPI. The reason

why it is included is, that it create a reference for the message, so that the

WHERE USED functionality can be used for the message. This is the SAP

standard way to handle it, copied from the Company Code GetList BAPI.

Created by Pavan

Mail : Praveen.srrec@gmail.com

27

Created by Pavan

Mail : Praveen.srrec@gmail.com

28

Complete coding in BAPI :

FUNCTION Z_BAPI_GET_ORDER_STATUS .
*"--
""Local interface:
*" IMPORTING
*" VALUE(BAPI_ORDER_STATUS_IMPORT) TYPE ZBAPI_ORDER_STATUS_IMPORT
*" EXPORTING
*" VALUE(RETURN) TYPE BAPIRETURN
*" TABLES
*" T_BAPISTAT STRUCTURE ZBAPISTAT
*"--
TYPES:BEGIN OF TYPE_TJ02T,
 ISTAT LIKE TJ02T-ISTAT,
 TXT04 LIKE TJ02T-TXT04,
 TXT30 LIKE TJ02T-TXT30,
 END OF TYPE_TJ02T.
DATA:G_BAPISTAT LIKE ZBAPISTAT ,
 T_TJ02T TYPE TYPE_TJ02T OCCURS 0,
 G_TJ02T TYPE TYPE_TJ02T.
DATA:BEGIN OF MESSAGE,
 MSGTY LIKE SY-MSGTY,
 MSGID LIKE SY-MSGID,
 MSGNO LIKE SY-MSGNO,
 MSGV1 LIKE SY-MSGV1,
 MSGV2 LIKE SY-MSGV2,
 MSGV3 LIKE SY-MSGV3,
 MSGV4 LIKE SY-MSGV4,
 END OF MESSAGE.
DATA:I_AUFNR LIKE AFKO-AUFNR,
 I_OBJNR LIKE JEST-OBJNR.
CALL FUNCTION 'BALW_BAPIRETURN_GET'
 EXPORTING
 TYPE = MESSAGE-MSGTY
 CL = MESSAGE-MSGID
 NUMBER = MESSAGE-MSGNO
 PAR1 = MESSAGE-MSGV1
 PAR2 = MESSAGE-MSGV2
 PAR3 = MESSAGE-MSGV3
 PAR4 = MESSAGE-MSGV4
 IMPORTING
 BAPIRETURN = RETURN
 EXCEPTIONS
 OTHERS = 1.

SELECT SINGLE AUFNR FROM AFKO INTO I_AUFNR
 WHERE AUFNR = BAPI_ORDER_STATUS_IMPORT-ORDERID.
IF SY-SUBRC NE 0.
 CLEAR MESSAGE.
 MESSAGE-MSGTY = 'E'.
 MESSAGE-MSGID = 'Z3'.
 MESSAGE-MSGNO = '000'.
 MESSAGE-MSGV1 = BAPI_ORDER_STATUS_IMPORT-ORDERID.
 IF 1 = 2.
 MESSAGE E000(Z3).
 ENDIF.
 ENDIF.
 CHECK RETURN IS INITIAL.
CONCATENATE 'OR' BAPI_ORDER_STATUS_IMPORT-ORDERID INTO I_OBJNR.
IF BAPI_ORDER_STATUS_IMPORT-I_EXCLUDEINACTIVE = 'X'.
 SELECT OBJNR STAT INACT FROM JEST INTO TABLE T_BAPISTAT

Created by Pavan

Mail : Praveen.srrec@gmail.com

29

 WHERE OBJNR = I_OBJNR AND INACT <> 'X'.
ELSE.
 SELECT OBJNR STAT INACT FROM JEST INTO TABLE T_BAPISTAT
 WHERE OBJNR = I_OBJNR .
ENDIF.
IF SY-SUBRC <> 0.
 CLEAR MESSAGE.
 MESSAGE-MSGTY = 'E'.
 MESSAGE-MSGID = 'Z3'.
 MESSAGE-MSGNO = '001'.
 MESSAGE-MSGV1 = BAPI_ORDER_STATUS_IMPORT-ORDERID.
IF 1 = 2.
 MESSAGE E001(Z3).
 ENDIF.
 ENDIF.
 CHECK RETURN IS INITIAL.
SELECT ISTAT TXT04 TXT30 FROM TJ02T INTO TABLE T_TJ02T FOR ALL ENTRIES
IN T_BAPISTAT
 WHERE ISTAT = T_BAPISTAT-STAT AND
 SPRAS = BAPI_ORDER_STATUS_IMPORT-I_SPRAS.
 SORT T_TJ02T BY ISTAT.
LOOP AT T_BAPISTAT INTO G_BAPISTAT.
READ TABLE T_TJ02T WITH KEY ISTAT = G_BAPISTAT-STAT
 BINARY SEARCH INTO G_TJ02T.
IF SY-SUBRC = 0.
 MOVE:G_TJ02T-TXT04 TO G_BAPISTAT-TXT04,
 G_TJ02T-TXT30 TO G_BAPISTAT-TXT30.
MODIFY T_BAPISTAT FROM G_BAPISTAT TRANSPORTING TXT04 TXT30.
ENDIF.
ENDLOOP.
ENDFUNCTION.

Created by Pavan

Mail : Praveen.srrec@gmail.com

30

Create a program in SE38

LZBAPISTATUSF01

LZBAPISTATUSTOP

When you try to create a program name starts with L then it gives an message as

“Program names L... are reserved for function group includes”

ignore that and press enter then you can be able to create a new program

Created by Pavan

Mail : Praveen.srrec@gmail.com

31

Coding for Include program LZBAPISTATUSF01:

&---
*& Include LZBAPISTATUSF01 *
&---

&---
*& Form SET_RETURN_MESSAGE
&---
* This routine is used for setting the BAPI return message.
* The routine is a standard routine for BAPIs that handles the message
* structure for the BAPIRETURN structure. It has been copied from the
* BAPI Company Code Getlist
--
* -->P_MESSAGE text
* <--P_RETURN text
--

form SET_RETURN_MESSAGE USING VALUE(P_MESSAGE) LIKE MESSAGE
 CHANGING P_RETURN LIKE BAPIRETURN.
 CHECK NOT MESSAGE IS INITIAL.
CALL FUNCTION 'BALW_BAPIRETURN_GET'
 EXPORTING
 TYPE = P_MESSAGE-MSGTY
 CL = P_MESSAGE-MSGID
 NUMBER = P_MESSAGE-MSGNO
 PAR1 = P_MESSAGE-MSGV1
 PAR2 = P_MESSAGE-MSGV2
 PAR3 = P_MESSAGE-MSGV3
 PAR4 = P_MESSAGE-MSGV4
* LOG_NO = ' '
* LOG_MSG_NO = ' '
 IMPORTING
 BAPIRETURN = P_RETURN
 EXCEPTIONS
 OTHERS = 1.

 .
IF SY-SUBRC <> 0.
* MESSAGE ID SY-MSGID TYPE SY-MSGTY NUMBER SY-MSGNO
* WITH SY-MSGV1 SY-MSGV2 SY-MSGV3 SY-MSGV4.
ENDIF.

endform. " SET_RETURN_MESSAGE

Save it and activate if it shows any warnings ignore them no problem but do

remember that all u create should be under any package only because at last we

have to release the BAPI

Created by Pavan

Mail : Praveen.srrec@gmail.com

32

Coding for LZBAPISTATUSTOP:

*FUNCTION-POOL ZBAPISTATUS. "MESSAGE-ID ..
FUNCTION-POOL ZBAPISTATUS. "MESSAGE-ID Z3
Types:
 begin of Type_tj02t,
 istat like tj02t-istat,
 txt04 like tj02t-txt04,
 txt30 like tj02t-txt30,
 end of type_tj02t.
DATA:
* Declarations for TABLE parameter
 T_BAPISTAT like ZBAPISTAT occurs 0,
 G_BAPISTAT like ZBAPISTAT,
* Table for object texts
 t_tj02t type type_tj02t occurs 0,
 g_tj02t type type_tj02t.
* Structure for return messages
DATA:
 BEGIN OF MESSAGE,
 MSGTY LIKE SY-MSGTY,
 MSGID LIKE SY-MSGID,
 MSGNO LIKE SY-MSGNO,
 MSGV1 LIKE SY-MSGV1,
 MSGV2 LIKE SY-MSGV2,
 MSGV3 LIKE SY-MSGV3,
 MSGV4 LIKE SY-MSGV4,
 END OF MESSAGE.

INCLUDE LZBAPISTATUSF01.
* - Subroutines

Save it and activate if it shows any warnings ignore them. Don’t bother about

them…..

Created by Pavan

Mail : Praveen.srrec@gmail.com

33

Create the API Method Using the BAPI WIZARD:

The BAPI wizard is used to expose the remote function module as a BAPI. The

wizard will generate some additional code, so the function module is a valid method

of the BOR. This allows the BAPI to be called as a workflow method in addition to

be called by an outside program.

Note:

Each function module corresponds to a method in the BOR

Go to the Business Object Builder SWO1.

You can either create the new Object type as a subtype of an existing business object

or create a new business object from scratch. In this example it would be obvious to

create the Object type as a subtype of BUS2005 Production order. However, to

illustrate how to create a new Object type from scratch, we will do this.

In the Object/Interface type field write the name of the new Business Object:

ZORDERSTAT. Press enter and fill in the additional fields necessary to create the

object type.

Supertype: Not relevant because we are creating our object from scratch

Program. This is the name of the program where the wizard generates code for the

Object type, NOT the function module we created earlier. The program name must

not be the name of an existing program.

Created by Pavan

Mail : Praveen.srrec@gmail.com

34

Goto the Tcode SWO1 in the Tcode its “O” Not zero. To create new Business Object

give the Object name ZORDERSTAT and then press F5 or press on the button

create

and fill with the following values

Supertype � not necessary for our present requirement

Object Type ���� ZORDERSTAT

Object name ���� ZProdOrderStatus

Name ���� ZProdOrderStatus

Description ���� Production Order System Status

Program ���� ZORDERSTAT

Application ���� Z

Created by Pavan

Mail : Praveen.srrec@gmail.com

35

Press enter and create the new business object. Note that when you create the business
object a standard interface, an attribute ObjectType and the methods ExistenceCheck
and Display are automatically generated. These cannot be changed. So Assign a
package while creating only not temporary($tmp)

Created by Pavan

Mail : Praveen.srrec@gmail.com

36

The next step is to add the Z_BAPI_GET_ORDER_STATUS method to the business object.

Select Utilities -> API methods -> Add method and write the name of the function module
in the dialog box. Next the dialog ox show below will be shown. This is the start screen of

the BAPI wizard. Proceed with wizard by pressing the (Next) button. But don’t press
Enter button

Created by Pavan

Mail : Praveen.srrec@gmail.com

37

After you have finished the wizard, you will notice that the ZGetOrderStatus has been
added to the business object:

Created by Pavan

Mail : Praveen.srrec@gmail.com

38

You can double-click on the method to see its properties. To use the business object

you must change the Object type status to Implemented.

Use menu Edit->Change releases status->Object type->To implemented.

Now you can test the object (Press F8).

Note that the BAPI wizard has added a wrapper class for the function module so it

can be used as method in the business object.

Choose menu Goto->Program to display the program:

Created by Pavan

Mail : Praveen.srrec@gmail.com

39

This is automatically generated code there is no need to perform any modifications

in that coding

***** Implementation of object type ZORDERSTAT *****
INCLUDE <OBJECT>.
BEGIN_DATA OBJECT. " Do not change.. DATA is generated
* only private members may be inserted into structure private
DATA:
" begin of private,
" to declare private attributes remove comments and
" insert private attributes here ...
" end of private,
 KEY LIKE SWOTOBJID-OBJKEY.
END_DATA OBJECT. " Do not change.. DATA is generated

BEGIN_METHOD ZGETORDERSTATUS CHANGING CONTAINER.
DATA:
 BAPIORDERSTATUSIMPORT LIKE ZBAPI_ORDER_STATUS_IMPORT,
 RETURN LIKE BAPIRETURN,
 TBAPISTAT LIKE ZBAPISTAT OCCURS 0.
 SWC_GET_ELEMENT CONTAINER 'BapiOrderStatusImport'

Created by Pavan

Mail : Praveen.srrec@gmail.com

40

 BAPIORDERSTATUSIMPORT.
 SWC_GET_TABLE CONTAINER 'TBapistat' TBAPISTAT.
 CALL FUNCTION 'Z_BAPI_GET_ORDER_STATUS'
 EXPORTING
 BAPI_ORDER_STATUS_IMPORT = BAPIORDERSTATUSIMPORT
 IMPORTING
 RETURN = RETURN
 TABLES
 T_BAPISTAT = TBAPISTAT
 EXCEPTIONS
 OTHERS = 01.
 CASE SY-SUBRC.
 WHEN 0. " OK
 WHEN OTHERS. " to be implemented
 ENDCASE.
 SWC_SET_ELEMENT CONTAINER 'Return' RETURN.
 SWC_SET_TABLE CONTAINER 'TBapistat' TBAPISTAT.
END_METHOD.

Now release the BAPI

Created by Pavan

Mail : Praveen.srrec@gmail.com

41

When the Business object has been checked and the documentation created, the

following steps must be carried out:

 * Release the BAPI function module (in the Function Builder).

 * Release the business object type

 (in the BOR ObjectType -> Change release status to -> Implemented).

 * Release the BAPI as a method in the BOR (Release the methods you has created

- Set the cursor on the method then

 Edit -> Change release status -> Object type component -> To released)

• For potential write BAPIs: Release the IDoc and its segments

Goto the Tcode BAPI

