
 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 1 of 22 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALE Scenario Development Guide 

 

10 February 1998 

 

Written by: Kevin Wilson 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 2 of 22 

TABLE OF CONTENTS 

1. INTRODUCTION TO ALE DEVELOPMENT ............................................................................. 4 

1.1. ALE Example .............................................................................................................................. 5 

2. OUTBOUND PROCESSING ..................................................................................................... 7 

2.1. Create IDoc type (WE30) Client independent ............................................................................ 7 

2.2. Create message type (WE81) Client independent ..................................................................... 8 

2.2.1. Link message to IDoc type (WE82 & BD69) Client independent ....................................... 8 

2.2.2. Maintain object type for message type (BD59) Client independent ................................... 9 

2.3. Configuring the Distribution Model ........................................................................................... 10 

2.3.1. Manual Configuration (BD64) Client dependent .............................................................. 10 

2.3.2. Distribute customer model (BD71) Client dependent ...................................................... 11 

2.4. Populate & distribute IDoc using ABAP .................................................................................... 12 

2.4.1. Example code .................................................................................................................. 12 

3. INBOUND PROCESSING ...................................................................................................... 15 

3.1. Create Function Module ........................................................................................................... 15 

3.1.1. Debugging inbound FM ................................................................................................... 20 

3.2. Maintain ALE attributes ............................................................................................................ 20 

3.2.1. Link Message Type to Function Module (WE57) Client independent .............................. 20 

3.2.2. Define FM settings (BD51) Client independent ............................................................... 21 

3.2.3. Maintain process codes (WE42) Client dependent ......................................................... 21 

3.3. Create inbound partner profile .................................................................................................. 22 

3.3.1. Maintain receiving system partner profile (WE20) Client dependent ............................... 22 

3.4. Test .......................................................................................................................................... 22 

 

TABLE OF FIGURES 

Figure 1: ALE Scenario model ................................................................................................................ 4 

Figure 2: Example Purchasing & Selling scenario .................................................................................. 5 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 3 of 22 

Figure 3: IDoc type ZINVRV01 ................................................................................................................ 7 

Figure 4: Outbound processing example code ..................................................................................... 14 

Figure 5: Inbound processing example code ........................................................................................ 20 

 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 4 of 22 

1. INTRODUCTION TO ALE DEVELOPMENT 

To develop a new custom ALE scenario, comprises 5 steps: 

1. Design and develop the custom IDoc with it’ s segments and a new message type 

2. Configure the ALE environment with the new IDoc and message type (customer model, 

partner profiles and linking IDoc to message type) 

3. Develop the outbound process which does the following: 

 Populates the custom IDoc with control info and functional data 

 Sends the IDoc to the ALE layer for distribution 

 Updates status and handles errors 

4. Configure the ALE inbound side (partner profiles with inbound process code) 

5. Develop the inbound process which does the following: 

 Reads the IDoc into a BDC table; selects other data that is required 

 Runs transaction using call transaction or BDC session 

 Updates status and handles errors 

Below is a pictorial representation of the flow of a complete ALE scenario from the sending 

system to the receiving system. 

Populate master
IDoc

Create master
IDoc

Application ALE  Layer

C
o
m
m
u
n
i
c
a
t
i
o
n

L
a
y
e
r

Customer
distributionmodel

IDoc
creationnecessary
?

Yes

MASTE R_ IDOC_ DISTRIBU
TE

Determine
receiver

Segment
filtering

F ield
conversion

Version
conversion

C
IDoc

C
IDoc

C
IDoc

Database Control
data

ApplicationALE  Layer

Sending Comm
IDocs

C
IDoc

F ield
conversion

Segment
filtering

Version
conversion

Delivery
control

Process
IDoc

Post application
doc

Database

Serialisatio
n

IDoc
status

Custom
developed

ALE  standard
functionality

M
IDoc

C
IDoc

A
IDoc

Sending System Receiving System

 

Figure 1: ALE Scenario model 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 5 of 22 

1.1. ALE Example 

For the purposes of this example we will develop a small ALE scenario. This scenario is 

described below. 

“ The receiver of an internal service must be able to reverse (cancel) the invoice receipt 

which will then cancel the applicable billing document automatically on the service 

provider’ s system.”  

     Cancel invoice

  Purchase Order

  Invoice

        Sales Order

  Invoice receipt

Reverse invoice receipt

Service ProviderService Receiver Transfer

Purchase Order change

 Confirmation

Sales Order change

Credit memoCredit memo
or

Release

Automatic

 

Figure 2: Example Purchasing & Selling scenario 

We will develop a custom IDoc to carry the billing number from the Service Receiver’ s 

system to the Service Provider’ s system. We will populate the IDoc in a user exit on 

the sending side and we will process the transaction on the receiving side using a 

custom function module and a BDC transaction call. 

No rule conversion, segment filtering or version conversion will be implemented in the 

model as described in Figure 1. 

Requirements 

 Working ALE environment - See ALE Basis Configuration Guide; 

 ALE scenario design together with the business requirement; 

 Development access; and 

 ALE configuration access. 

NOTES: 

1. All IMG references to transactions are located in the transaction SALE which is the 

ALE portion of the IMG 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 6 of 22 

2. This is one way of developing a scenario where no message control exists. If 

message control exist (EG. On purchase orders) then NAST can be used to call an 

outbound function module that would create the required IDocs. 

3. Extensive knowledge of IDocs and ALE basis configuration is required in order to 

understand this guide. 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 7 of 22 

2. OUTBOUND PROCESSING 

2.1. Create IDoc type (WE30) Client independent 

The IDoc type refers to the IDoc structure that you will require for your development. In 

our case the IDoc type is called ZINVRV01. This IDoc type will have 1 segment called 

Z1INVRV with 2 fields, LIFNR & XBLNR, in this segment. If you require many segments 

or nested segments then they are also created using the same procedure. 

We will create the IDoc of the following structure: 

ZINVRV01 Purchasing and Selling - Invoice receipt reversal 

 Z1INVRV P&S - Segment 1 

  Segment fields  

   LIFNR Vendor account number 

   XBLNR Reference document number 

Figure 3: IDoc type ZINVRV01 

To create the IDoc type, follow these next few steps: 

 Enter transaction WE30 (ALE -> Extensions -> IDoc types -> Maintain IDoc type) 

 Type in ZINVRV01 and click on Basic IDoc type, click the Create icon 

 Click on Create new (we are creating an IDoc from scratch but you may want to copy 

another IDoc if it is similar to your requirements) and enter a description, and press 

enter 

 Click on ZINVRV01 and then on the Create icon 

 Enter Z1INVRV as the segment type (must start with Z1), check mandatory if the 

segment must exist (in this case check it), enter 1 in minimum number and 1 as 

maximum number. (Make the maximum number 9999999999 if there are going to be 

many of these segments in each IDoc. IE. When line items are passed via IDocs), 

click on Segment editor 

 Enter a description for your segment type and create 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 8 of 22 

 Enter a description for your segment, enter each field required in your IDoc, in our 

case type LIFNR across for Field name, DE structure and DE documentation, repeat 

for XBLNR and press enter to validate. 

 Save and generate, press back 

 To release the segment choose Goto, Release from the menu 

 Check the box on the line of your new segment 

 Save, back and enter 

 Your IDoc type structure should be displayed with your new segment 

 Save and back 

 To release the IDoc type choose Extras, Release type from the menu and Yes 

Your IDoc is now ready for use. If you need to add fields or segments to your IDoc type, 

you will need to cancel the release of the IDoc type as well as the segment release using 

a similar procedure followed above (except now you uncheck the release box for the 

segment and you choose cancel release for the IDoc type). 

2.2. Create message type (WE81) Client independent 

To create a new message type, follow these next few steps: 

 Enter transaction WE81 (ALE -> Extensions -> IDoc types -> Maintain message type 

for intermed. Structure -> Create logical message type) 

 Choose Create logical message type by double clicking on it 

 Click on change icon to enter change mode 

 Click on New entries to add a new type 

 Enter the required message type, in our case it is ZINVRV and an appropriate 

description 

 Save and exit. 

Your message type has now been created. The next step will be to link it to the IDoc. 

2.2.1. Link message to IDoc type (WE82 & BD69) Client independent 

To link the message type to the IDoc type follow these next few steps: 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 9 of 22 

 Enter transaction WE82 (ALE -> Extensions -> IDoc types -> Maintain 

message type for intermed. Structure -> EDI: Message Types and 

Assignment to IDoc Types) 

 Click on change icon to enter change mode 

 Click on New entries to create the link 

 Enter the message type ZINVRV and the BasicIDoc type as ZINVRV01 

 Save and exit 

 Enter transaction BD69 (ALE -> Extensions -> IDoc types -> Maintain 

message type for intermed. Structure -> Assign message type to IDoc for 

ALE) 

 Click on change icon to enter change mode 

 Click on New entries to create the link 

 Enter the message type ZINVRV and the BasicIDoc type as ZINVRV01 

 Save and exit 

Your IDoc is now linked to your message type. We still need to link object types 

and add the message to the model before we can use the message. 

2.2.2. Maintain object type for message type (BD59) Client independent 

The ALE objects are used to create links between IDocs and applications 

objects, to control the serialisation, to filter messages in the customer model 

and to use listings. 

For our own message type and IDoc you must maintain object types for the 

links.  

If you want to check the serialisation for the message type, then you must 

maintain object types for the serialisation. If no serialisation object has been 

maintained for a given message type, then the serialisation will not be checked 

for this message type. 

To add an object type to our message type, follow these next few steps: 

 Enter transaction BD59 (ALE -> Extensions -> ALE object maintenance -> 

Maintain object types) 

 Type in your message type ZINVRV and press enter 

 Click on New entries 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 10 of 22 

 Enter your object type, LIFNR (We need to use the vendor as a filter object), 

the segment name where LIFNR resides, Z1INVRV, a number 1 for the 

sequence followed by the actual field name LIFNR 

 Save and exit. 

You have now created an object that we’ ll use as a filter object in the customer 

model to direct the flow of messages to the various logical systems based on the 

vendors in the filter of the message type ZINVRV. 

We now need to add our new message type to the distribution model. 

2.3. Configuring the Distribution Model 

This task is performed on your ALE reference client. 

2.3.1. Manual Configuration (BD64) Client dependent 

To manually configure the customer distribution model, read the ALE 

configuration procedure, and follow these steps: 

 Perform the Maintain customer distribution model directly function. (ALE -> 

Distribution customer model -> Maintain customer distribution model directly) 

 Specify the customer model you want to maintain and the logical system that 

is to be the sender of the messages OR create a new model. (Create model 

ALE with logical system ALELS1C400) 

 Choose the receiving systems to which the sending system must forward 

message type ZINVRV to. 

 For each receiving logical system allocate the message type necessary for 

communication to the receiving systems as per ALE configuration procedure. 

 Create filter objects (in our case LIFNR as the object type with the associated 

vendor number, 0000018001 with leading zeros, in the object area) for the 

message types.  

 Save the entries. 

NOTES: 

You cannot maintain a message type between the same sender and receiver in 

more than one customer distribution model.  

Only the owner is authorised to modify the model.  



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 11 of 22 

To change the owner of a model, choose the 'Maintain ownership of customer 

distribution model' function. Make sure that all changes will be distributed to all 

systems that know the corresponding model. To do so, you can use the 

correction and transport system.  

To transport the customer distribution model you should use the Distribute 

customer model function of the IMG as described below. 

2.3.2. Distribute customer model (BD71) Client dependent 

After the customer model has been created centrally, it must be distributed to 

the other remote systems. This entails first of all setting up the communication 

for the distributed systems and then sending the model. 

2.3.2.1. Distribute Model (BD71) Client dependent 

This task is performed on your ALE reference client. To distribute the 

customer distribution model, read the ALE configuration procedure and 

follow these steps: 

 Make the settings for the communication with the other decentral 

systems, you have not set them yet.  

 Define the RFC destination for R/3 connections whose names 

correspond to the name of the corresponding logical system.  

 Create the output partner profile.  

 Distribute the customer model  

 Specify the name of the customer model.  

 You must specify the target system to which you want to 

distribute the customer model.  

 You must repeat this function for every distributed logical 

system.  

2.3.2.2. Maintain sending system partner profile (WE20) Client dependent 

With this function, you define the partner profiles for all outbound and 

inbound messages on the basis of the customer distribution model.  

After you have defined and distributed the customer model, you will have 

to maintain the partner profiles locally. To do this read the ALE 

configuration procedure. 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 12 of 22 

 Enter the output mode (background, immediately) and the package 

size for outbound processing.  

Requirements  

 The customer model must be maintained. 

 RFC destinations must be maintained. 

 The customer model must be distributed. 

 To ensure that the appropriate persons in charge are informed if a 

processing error occurs, you must make settings in: Error processing 

Maintain organisational units. 

2.4. Populate & distribute IDoc using ABAP 

An IDoc consists of a control record with structure edidc and one or more data records 

with structure edidd. The control record contains the sender and recipient of the IDoc, as 

well as information on the type of message. 

To be able to pass an IDoc to the ALE layer, you must set up a field string with structure 

edidc and an internal table with structure edidd. They are used to call function module 

master_idoc_distribute, which performs the save to the database and triggers the 

dispatch if necessary. 

2.4.1. Example code 

The code displayed below does the following: 

 populates our IDoc segment Z1INVR with the 2 fields XBLNR and LIFNR, 

populates the segment name and appends this to an internal table used to 

store the IDoc data; 

 populates the control record info with the message type and IDoc type; and 

 calls the MASTER_IDOC_DISTRIBUTE function module which distributes the 

IDoc as configured in the customer distribution model. 

*--- Data declaration statements 

DATA:  C_INVREV_SEGNAME(7) TYPE C VALUE 'Z1INVRV', 

  C_INVREV_MESTYPE(6) TYPE C VALUE 'ZINVRV', 

  C_INVREV_IDOC_TYPE(8) TYPE C VALUE 'ZINVRV01',  

  Z1INVRV LIKE Z1INVRV, 

  C_INVREV_DOCTYPE LIKE BKPF-BLART VALUE 'YY', 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 13 of 22 

  IDOC_CONTROL LIKE EDIDC, 

  T_COMM_CONTROL LIKE EDIDC OCCURS 0 WITH HEADER LINE, 

  IDOC_DATA LIKE EDIDD OCCURS 0 WITH HEADER LINE. 

 

*--- Move the document header into a structure 

LOOP AT DOC_HEAD_TAB INTO DOC_HEAD. 

ENDLOOP. 

 

*--- Move the document item data into a structure 

LOOP AT DOC_ITEM_TAB INTO DOC_ITEM WHERE NOT ( LIFNR IS INITIAL ). 

ENDLOOP. 

 

*--- Populate the IDoc segment’ s field with the required data 

CLEAR Z1INVRV. 

Z1INVRV-LIFNR = DOC_ITEM-LIFNR.  “ Store vendor number for filter 

Z1INVRV-XBLNR = DOC_HEAD-XBLNR.  “ Billing number 

IDOC_DATA-SEGNAM = C_INVREV_SEGNAME. “ Segment name 

IDOC_DATA-SDATA = Z1INVRV.   “ Segment data 

APPEND IDOC_DATA.    “ Populate IDoc internal table 

 

*--- Move the control data info required for the distribution 

IDOC_CONTROL-MESTYP = C_INVREV_MESTYPE. 

IDOC_CONTROL-DOCTYP = C_INVREV_IDOC_TYPE. 

 

*--- Call the distribute function with the required parameters 

CALL FUNCTION 'MASTER_IDOC_DISTRIBUTE' IN UPDATE TASK 

  EXPORTING 

   MASTER_IDOC_CONTROL  = IDOC_CONTROL 

  TABLES 

   COMMUNICATION_IDOC_CONTROL = T_COMM_CONTROL 

   MASTER_IDOC_DATA   = IDOC_DATA 

  EXCEPTIONS 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 14 of 22 

   ERROR_IN_IDOC_CONTROL   = 1 

   ERROR_WRITING_IDOC_STATUS  = 2 

   ERROR_IN_IDOC_DATA   = 3 

   SENDING_LOGICAL_SYSTEM_UNKNOWN  = 4 

   OTHERS     = 5. 

 

Figure 4: Outbound processing example code 

NOTE: 

For debugging purposes, use transaction WE05 (IDoc overview) to see check 

your IDoc status, or to see whether an IDoc was created/ 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 15 of 22 

3. INBOUND PROCESSING 

3.1. Create Function Module 

This function module is called when a message type, of type ZINVRV, comes into the 

receiving system. This needs to be configured and is dealt with later in this section. The 

function module is passed the IDoc as a parameter. 

Example parameters 

Import parameters Reference field Opt Y/N 

INPUT_METHOD BDWFAP_PAR-INPUTMETHD N 

MASS_PROCESSING BDWFAP_PAR-MASS_PROC N 

 

Export Parameters Reference field Opt Y/N 

WORKFLOW_RESULT BDWFAP_PAR-RESULT N 

APPLICATION_VARIABLE BDWFAP_PAR-APPL_VAR N 

IN_UPDATE_TASK BDWFAP_PAR-UPDATETASK N 

CALL_TRANSACTION_DONE BDWFAP_PAR-CALLTRANS N 

 

Table Parameters Reference field Optional Y/N 

IDOC_CONTRL EDIDC  

IDOC_DATA      EDIDD  

IDOC_STATUS BDIDOCSTAT  

RETURN_VARIABLES BDWFRETVAR  

SERIALIZATION_INFO BDI_SER  

 

Exceptions 

WRONG_FUNCTION_CALLED 

Example code 

The code displayed below does the following: 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 16 of 22 

 populates a BDC table with the IDoc info; 

 calls the transaction via a BDC call; and 

 updates the IDoc status according to the BDC error status. 

 

EXTRACT FROM: Z_IDOC_INPUT_ZINVRV 

 

*--- Declaration of local variables 

DATA: C_SEGNAM(10) TYPE C VALUE 'Z1INVRV'. 

 

*-Loop through the IDOCs 

LOOP AT IDOC_CONTRL. 

*---Loop through the data for the IDOC 

 LOOP AT IDOC_DATA WHERE DOCNUM = IDOC_CONTRL-DOCNUM. 

  CASE IDOC_DATA-SEGNAM. 

   WHEN C_SEGNAM. 

*    Here we get the info from the idoc table 

    IT_Z1INVRV = IDOC_DATA-SDATA. 

  ENDCASE. 

  PERFORM REV_INV. 

 ENDLOOP. 

 PERFORM UPDATE_IDOC_STATUS. 

 ENDLOOP. 

 

FORM REV_INV   "Reverse invoice form 

*--- Local variables & constants 

DATA: C_TCODE LIKE BKPF-TCODE VALUE 'VF11'.  "BDC transaction code 

 

*--- Now we can build the bdc table to call the reversal transaction start of screen 109 

CLEAR BDC_TAB. 

BDC_TAB-PROGRAM  = 'SAPMV60A'. 

BDC_TAB-DYNPRO   = '109'. 

BDC_TAB-DYNBEGIN = 'X'. 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 17 of 22 

APPEND BDC_TAB. 

*--- Document number 

CLEAR BDC_TAB. 

BDC_TAB-FNAM = 'KOMFK-VBELN(01)'. 

BDC_TAB-FVAL = IT_Z1INVRV-XBLNR.     "Billing document number 

APPEND BDC_TAB. 

*--- OK Code for screen 109 

CLEAR BDC_TAB. 

BDC_TAB-FNAM = 'BDC_OKCODE'. 

BDC_TAB-FVAL = 'SICH'. 

APPEND BDC_TAB. 

 

*--- Now we can call transaction 'VF11' with the populated bdc table. The transaction is called inside the idoc-

contrl loop, so a transaction will be called for every idoc (journal). the transaction is called in no-display mode 

('N') because this code runs in background as it is called by ale.  The update is specified to be synchronous 

('S') because we have to wait for the result to update the idoc status correctly. 

CALL TRANSACTION C_TCODE USING BDC_TAB MODE 'N' UPDATE 'S'. 

 

*--- Store the return code for use in another form (status update) 

RETURN_CODE = SY-SUBRC. 

 

*--- Here we check the return code, if there was an error, we put the transaction in a bdc session for the user 

to review and correct. 

IF SY-SUBRC NE 0. 

 CALL FUNCTION 'BDC_OPEN_GROUP' 

  EXPORTING 

   CLIENT = SY-MANDT 

   GROUP  = 'ZINVRV' 

   USER   = C_ALE_USER 

   KEEP   = 'X'. 

 CALL FUNCTION 'BDC_INSERT' 

  EXPORTING 

   TCODE     = C_TCODE 

  TABLES 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 18 of 22 

   DYNPROTAB = BDC_TAB. 

 CALL FUNCTION 'BDC_CLOSE_GROUP' 

  EXCEPTIONS 

   NOT_OPEN    = 1 

   QUEUE_ERROR = 2 

   OTHERS      = 3. 

ELSE.      "No problems 

 C_EXISTS = 'N'. 

*   Select from the billing document table to get sales doc number 

 SELECT * FROM VBRP WHERE VBELN = IT_Z1INVRV-XBLNR. 

*     Select from the sales document table to get user status number 

  SELECT SINGLE * FROM VBAP WHERE VBELN = VBRP-AUBEL AND 

   POSNR = VBRP-AUPOS. 

*     Select from the status table to change the user status to pending 

  SELECT * FROM JEST WHERE OBJNR = VBAP-OBJNR AND 

   STAT LIKE C_USER_STATUS. 

   IF JEST-STAT = C_US_PENDING.   "User status is pending 

    JEST-INACT = C_UNCHECKED.    "Make pending the active status 

    UPDATE JEST. 

    C_EXISTS = 'Y'.            "I.E. An entry is already in table 

   ELSEIF JEST-INACT = C_UNCHECKED AND JEST-STAT NE 

C_US_PENDING. 

    JEST-INACT = C_CHECKED.      "Make everything else inactive 

    UPDATE JEST. 

   ENDIF. 

  ENDSELECT. 

  IF C_EXISTS = 'N'.    "I.E. Pending has never been a status before 

   JEST-OBJNR = VBAP-OBJNR. 

   JEST-STAT  = C_US_PENDING. 

   JEST-INACT = C_UNCHECKED.      "Make pending the active status 

   INSERT JEST. 

  ENDIF. 

 ENDSELECT.       "Select from VBRP (Billing document table) 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 19 of 22 

ENDIF. 

ENDFORM.                               " REV_INV 

 

FORM UPDATE_IDOC_STATUS.                                                

*--- Now we check the CALL TRANSACTION return code and set IDOC status  

 CLEAR IDOC_STATUS.                                                    

 IF RETURN_CODE = 0.                                                   

  WORKFLOW_RESULT = '0'.                                              

  IDOC_STATUS-DOCNUM = IDOC_CONTRL-DOCNUM.                            

  IDOC_STATUS-STATUS = '53'.                                          

  IDOC_STATUS-UNAME = SY-UNAME.                                       

  IDOC_STATUS-REPID = SY-REPID.                                       

  IDOC_STATUS-MSGTY = SY-MSGTY.                                       

  IDOC_STATUS-MSGID = SY-MSGID.                                       

  IDOC_STATUS-MSGNO = SY-MSGNO.                                       

  IDOC_STATUS-MSGV1 = SY-MSGV1.                                       

  IDOC_STATUS-MSGV2 = SY-MSGV2. 

  IDOC_STATUS-MSGV3 = SY-MSGV3.                          

  IDOC_STATUS-MSGV4 = SY-MSGV4.                          

  RETURN_VARIABLES-WF_PARAM = 'Processed_IDOCs'.         

  RETURN_VARIABLES-DOC_NUMBER = IDOC_CONTRL-DOCNUM.      

  APPEND RETURN_VARIABLES.                               

 ELSE.                                                    

  WORKFLOW_RESULT = '99999'.                             

  IDOC_STATUS-DOCNUM = IDOC_CONTRL-DOCNUM.               

  IDOC_STATUS-STATUS = '51'.                             

  IDOC_STATUS-UNAME = SY-UNAME.                          

  IDOC_STATUS-REPID = SY-REPID.                          

  IDOC_STATUS-MSGTY = SY-MSGTY.                          

  IDOC_STATUS-MSGID = SY-MSGID.                          

  IDOC_STATUS-MSGNO = SY-MSGNO.                          

  IDOC_STATUS-MSGV1 = SY-MSGV1. 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 20 of 22 

  IDOC_STATUS-MSGV2 = SY-MSGV2.                           

  IDOC_STATUS-MSGV3 = SY-MSGV3.                           

  IDOC_STATUS-MSGV4 = SY-MSGV4.                           

  RETURN_VARIABLES-WF_PARAM = 'ERROR_IDOCS'.              

  RETURN_VARIABLES-DOC_NUMBER = IDOC_CONTRL-DOCNUM.       

  APPEND RETURN_VARIABLES.                                

 ENDIF.                                                    

 APPEND IDOC_STATUS.                                       

ENDFORM.                               " UPDATE_IDOC_STATUS 

Figure 5: Inbound processing example code 

3.1.1. Debugging inbound FM 

Use transaction WE19 to test inbound function module in debugging mode. Also 

use WE05 to view the IDocs and their statuses. 

3.2. Maintain ALE attributes 

The inbound function module needs to be linked to the message type and the message 

type needs to be linked to the appropriate inbound process code at the partner profile 

level before the scenario is enabled. These steps are described below in detail. 

3.2.1. Link Message Type to Function Module (WE57) Client independent 

To link a message (ZINVRV) type to a function module 

(Z_IDOC_INPUT_ZINVRV) follow these steps: 

 Enter transaction WE57 (ALE -> Extensions -> Inbound -> Allocate function 

module to logical message) 

 Select an entry (EG. IDOC_INPUT_ORDERS) and copy 

 Type in module name Z_IDOC_INPUT_ZINVRV 

 Type in basic IDoc type as ZINVRV01 

 Type in message type as ZINVRV 

 Type object type as IDOCINVOIC (Invoice document) - Used for workflow 

 Direction should be set to 2 for inbound 

 Enter and save 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 21 of 22 

3.2.2. Define FM settings (BD51) Client independent 

 Enter transaction BD51 (ALE -> Extensions -> Inbound -> Define settings for 

input modules) 

 Click on New entries 

 Type in the name of the new function module Z_IDOC_INPUT_ZINVRV 

 Enter 0 for mass processing in the output column 

 Save and Exit 

3.2.3. Maintain process codes (WE42) Client dependent 

A process code needs to be maintained on each client. It then needs to be linked 

to the message via the partner profiles on each client. This allows the various 

clients to use a unique function module for the same message type. 

To maintain the process code follow these steps: 

 Log on to the appropriate receiving system client 

 Execute WE42 (ALE -> Extensions -> Inbound -> Maintaining process codes 

inbound) 

 Choose Inbound with ALE service 

 Choose Processing with function module 

 Click on Processing with function module and choose create icon 

 Click on New Entries 

 Type in process code ZINR and give it a description and save 

 Now you are asked to Please maintain codes added in ALE entry methods, 

enter and choose Z_IDOC_INPUT_FIRVSL and copy it. You should choose 

a FM similar to your one. 

 Enter your process code ZINR 

 Enter your function module Z_IDOC_INPUT_ZINVRV 

NOTE: The next 6 steps are used in workflow error handling.  

 Enter IDPKFIDCMT in object type 

 Enter MASSINPUTFINISHED in End event 

 Enter IDOCINVOIC in IDoc object type 



 

 

 

ALE Scenario Development Guide 

 

 

 

DOC NAME: ALE-SCENARIO.DOC 

Print Date: 14/09/2008 03:46:00 Version 1 Page 22 of 22 

 Enter INPUTERROROCCURREDFI in IDoc start event 

 Enter INPUTFINISHEDFI in IDoc End event 

 Enter IDOCINVOIC in Application object type 

You will need to determine the task associated with object IDOCINVOIC, and 

then assign the appropriate position to it. This position will then receive the 

application error messages via workflow. 

To set up the workflow area please consult the Workflow config guide. 

3.3. Create inbound partner profile 

For each message type you need to maintain the inbound partner profiles. 

3.3.1. Maintain receiving system partner profile (WE20) Client dependent 

To maintain inbound partner profiles read the document ALE configuration 

procedure: 

 Add the message type ZINVRV with process code ZINR. 

 Enter the output mode (background, immediately) for inbound processing and 

NO message code. 

 Enter the position S and choose the ALE administrator 50000085. This 

position will then receive all the technical ALE errors via workflow. 

3.4. Test 

Once the inbound function module has been debugged the scenario should be ready to 

test in its entirety. If problems occur, read through the relevant areas of this document to 

check your configuration or code. 


